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BIFURCATING STANDING WAVES FOR EFFECTIVE EQUATIONS IN

GAPPED HONEYCOMB STRUCTURES

WILLIAM BORRELLI AND RAFFAELE CARLONE

Abstract. In this paper we deal with two-dimensional cubic Dirac equations appearing
as effective model in gapped honeycomb structures. We give a formal derivation starting
from cubic Schrödinger equations and prove the existence of standing waves bifurcating
from one band-edge of the linear spectrum.
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1. Introduction

1.1. Motivation and main results. In this paper we deal with nonlinear massive Dirac
equations of the form

(D+mσ3 − ω)ψ = h(ψ)ψ on R
2 , (1)

where ω ∈ (−m,m) is a frequency in the spectral gap of the Dirac operator D+mσ3, with
m > 0 (see Section 2).
We consider the nonlinearity in (1) of the form

h(z) =

(
β1|z1|2 + 2β2|z2|2 0

0 β1|z2|2 + 2β2|z1|2
)
, z ∈ R

2 , (2)

with given parameters β1, β2 > 0.

Equation (1) appears as an effective model of wave propagation in two-dimensional hon-
eycomb structures. As proved in [17], if V ∈ C∞(R2,R) is a potential having the symmetries
of a honeycomb lattice, then the Schrödinger operator

H = −∆+V (x) , x ∈ R
2 , (3)

exhibits generically conical touching points in its dispersion bands called Dirac points. The
dynamics of wave packets spectrally concentrated around Dirac points, see [19], is thus
effectively described by the massless (i.e., m = 0) Dirac operator. Adding a perturbation
that breaks parity induces a mass term in the effective operator, as proved in [17, Appendix].

An important model in nonlinear optics and in the description of macroscopic phenomena
is given by the nonlinear Schrödinger / Gross-Pitaevski equation [15, 25, 28]

i∂tu = Hu+ |u|2u. (4)

This equation, in the approximation described before, leads (at least formally) to the
effective cubic nonlinearity (2). Indeed, as first computed in [18], the effective equation
around Dirac points reads

{
∂tΞ1 + λ(∂x1

+ i∂x2
)Ξ2 = i(2β2|Ξ1|2 + β1|Ξ2|2)Ξ1

∂tΞ2 + λ(∂x1
− i∂x2

)Ξ1 = i(β1|Ξ1|2 + 2β2|Ξ2|2)Ξ2

, (5)
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where the parameters λ ∈ C \ {0}, β1, β2 > 0 depend on the potential V in (3).
Setting Ψ1 := − λ

|λ|Ξ2 ,Ψ2 := Ξ1 and looking for stationary solutions

Ψ(t, x) = ψ(x) ,

we get the massless version of (1), i.e. with m = ω = 0. As shown in Section 3, adding a
perturbation breaking the parity of the potential V in (3) gives an additional mass term in
the effective equation. This corresponds to a gap (−m,m) in the linear spectrum so that
we can consider stationary solutions at frequency ω ∈ (−m,m), leading to (1).

In [2] the validity of the effective cubic equation is studied. In Section 3 we give a formal
derivation of the effective model (1) using a multiscale expansion.

Existence and qualitative properties of solutions to the massless version of (1) have been
studied in [5, 8]. The massive case in (1) has been addressed in [3, 6] for the special choice
of parameters in (1).

In this paper we partly generalize those results dealing with arbitrary β1, β2 > 0 and
proving the existence of stationary solutions bifurcating from one edge of the spectral gap
of the operator D+mσ3.

We remark that cubic Dirac equations in two dimensions are critical for the Sobolev
embedding. Such types of equations have been studied also in different contexts. We
mention, for instance, problems from conformal spin geometry, for which we refer the reader
to [1, 20, 22, 23] and references therein, and in the case of coupled systems involving the
Dirac operator and critical nonlinearities related to supersymmetric models coupling gravity
with fermions, see [9, 24]. The main difficulty in studying those equations comes from
the underlying conformal symmetry so that looking for stationary solutions by variational
methods one has to deal with the induced loss of compactness, see [3, 6]. This problem can
be circumvented, for instance, using a bifurcation argument to find solutions to (1), as done
in this paper following [26]. We mention that the same method has been recently used for
nonlinear Dirac equations on star graphs [7].

The results given in [3, 6] correspond to the choice of parameters β1 = 2β2, so that one
can assume β1 = 1, β2 = 1/2 by scaling. In this paper we deal with general β1, β2 > 0, but
this forces us to put restrictions on the frequency ω that will be close to to the band-edge
at m. More precisely, we focus on the existence of standing waves to (1) of symmetric form

ψ(r, θ) =

(
v(r)

iu(r)eiθ

)
, (r, θ) ∈ (0,∞) × S

1 (6)

(r, θ) being polar coordinates in R
2, and u, v real-valued functions. Notice that (6) is the

two-dimensional analogue of the Soler/Wakano ansatz [12, 14, 16].

Theorem 1.1. Let ε := m− ω. There exists ε0 > 0 such that for ε ∈ (0, ε0) equation (1)
admits a solution ψε of the form (6), with

uε(r) = ε(−f ′(
√
εr) + e1(

√
εr)) , vε(r) =

√
ε(f(

√
εr) + e2(

√
εr)) , r > 0 ,

where ‖ej‖H1(R2) 6 Cε, j = 1, 2, and f ∈ H1(R2) is the positive ground state of the NLS

−∆f − f3 + f = 0 , on R
2.

Remark 1.2. Arguing as in Section 4 one can deal with the regime −m < ω < 0, ω → −m.
However in that case the limit equation (57) is replaced by the following defocusing NLS

−∆U + U3 + U = 0 , on R
2, (7)

which has no non-trivial solution in H1(R2). This can be easily seen multiplying the
equation by such a solution and integrating by parts.
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2. The Dirac operator

The Dirac operator is the constant coefficients first order differential operator defined in
two dimensions as

Dm = D +mσ3 := −iσ · ∇+mσ3 (8)

The constant m > 0 usually represents the mass of the particle described by the equation.
We adopt the notation σ · ∇ := σ1∂1 + σ2∂2 and the σk’s are the Pauli matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (9)

The operator Dm is a self-adjoint operator on L2(R2,C2), with domain H1(R2,C2) and

form-domain H1/2(R2,C2).
Passing to the Fourier domain p = (p1, p2) the Dirac operator (8) becomes the multipli-

cation by the matrix

D̂m(p) =

(
m p1 − ip2

p1 + ip2 m

)

and then the spectrum is easily found to be

Spec(Dm) = (−∞,−m] ∪ [m,+∞) (10)

The above mentioned results can be found, e.g., in [30].

3. Formal derivation of the model

In this section we give a formal derivation of equation (1) from the corresponding cubic
Schrödinger equation with honeycomb potential, following the exposition given in [4].

We consider a fixed triangular lattice Λ := Zv1 ⊕ Zv2, where v1, v2 ∈ R
2 are two linearly

independent vectors.

3.1. Honeycomb Schrödinger operators. Consider the Schrödinger operator

H := −∆+ V (x), x ∈ R
2 . (11)

Definition 3.1. The function V ∈ C∞(R2) is called honeycomb potential, see [17], if there

exists x0 ∈ R
2 such that Ṽ (x) = V (x− x0) has the following properties:

(1) Ṽ is periodic with respect to some triangular lattice Λ, that is, Ṽ (x + v) = Ṽ (x),
∀x ∈ R

2,∀v ∈ Λ;
(2) Ṽ is even: Ṽ (−x) = Ṽ (x), ∀x ∈ R

2;

(3) Ṽ is invariant by 2π
3 counteclockwise rotation:

R[Ṽ ](x) := Ṽ (R∗x) = Ṽ (x) ∀x ∈ R
2,

where R is the corresponding rotation matrix:

R =

(
−1

2

√
3
2

−
√
3
2 −1

2

)
. (12)

Remark 3.2. (Some examples of honeycomb potentials [17])

(1) Atomic potentials: Let H = (A+Λ)∪(B+Λ) be a hexagonal lattice, given by the
superposition of two triangular lattices. Consider a radial function V0 ∈ C∞(R2)
raplidly decaying at infinity (for instance, with polynomial rate) representing the
potential generated by a nucleous located on a vertex of the lattice. The potential

V (x) =
∑

y∈H
V0(x− y)
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is then given by the superposition of atomic potentials, and it is a honeycomb
potential (Def.3.1).

(2) Optical lattices: The envelop ψ of the electric field of a monochromatic beam
propagating in a dielectric medium can be described by a Schrödinger equation.
More precisely, denoting by z the direction of propagation of the beam and assuming
that the refraction index varies only in the transversal directions (x, y), the function
ψ solve the following equation

i∂zψ = (−∆+ V (x, y))ψ . (13)

In this case the honeycomb potential is generated using optical interference tech-
niques [27]. A typical example, is the potential of the form

V (x, y) ≃ V0 (cos(k1 · (x, y)) + cos(k1 · (x, y)) + cos((k1 + k2) · x)) , V0 ∈ R, k1, k2 ∈ R
2.

(14)

For any fixed k ∈ R
2 consider the following eigenvalue problem with pseudo-periodic

boundary conditions (see [17] and [29, Sec. XIII.16]) :
{
HΦ(x; k) = µ(k)Φ(x; k), x ∈ R

2

Φ(x+ v; k) = eik·vΦ(x; k), v ∈ Λ.
(15)

Remark 3.3. The eigenfunctions Φ(x; k) are of class C∞ by elliptic regularity theory.

Recall that, given a lattice, its (first )Brillouin zone B is defined as the fundamental cell
of the dual lattice. In the case of a honeycomb lattice, both its fundamental cell and its
Brillouin zone are hexagonal [17]. An important property of B is that waves propagating
in a periodic medium can be described in terms of Bloch functions.

Given k ∈ B, the resolvent of H(k) is compact and then the spectrum of the operator is
real and purely discrete, accumulating at +∞:

µ1(k) 6 µ2(k) 6 ... 6 µj(k) 6 ... ↑ +∞. (16)

Fixing n ∈ N, one says that k 7→ µn(k) is the n-th dispersion band of the operator H and
call n-th Bloch wave the function Φn(x, k). The spectrum may also have some gaps, and it
can be obtained as union of the images of the dispersion bands of the operator

Spec(H) =
⋃

n∈N
µn(B) . (17)

Moreover, the Bloch waves constitute a complete systems, meaning that for all f ∈
L2(R2)

f(x)−
∑

16n6N

∫

B
〈Φn(·, k), f(·)〉L2(R2)Φn(x; k)dk −→ 0 (18)

in L2(R2), for N −→ +∞ [17, 29].
The Cauchy problem

{
i∂tu(t, x) = Hu(t, x), (t, x) ∈ R× R

2,

u(0, x) = u0(x) ∈ L2(R2),
(19)

admits the solution

e−iHV tu0 =
∑

n∈N

∫

B
e−iµn(k)〈Φn(·, k), u0(·)〉L2(R2)Φn(x, k)dk. (20)

As a consequence, it is evident that the dynamics (20) are strongly influenced by the
behavior of the band functions µn(·), n ∈ N. In particular, as showed in [19], there exist
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two bands µN , µN+1 that meet at conical points located at the vertices of B. That is, locally
near such a point K∗ ∈ B there holds

{
µN+1(k) − µN+1(K∗) = |λ||k −K| (1 + E+(k −K)) ,

µn(k)− µN (K∗) = −|λ||k −K| (1 +E−(k −K))
, |k −K| < δ , λ ∈ C, λ 6= 0 .

(21)
Here E± : Uδ → R, with Uδ :=

{
y ∈ R

2 : |y| < δ
}
, are Lipschitz functions such that E±(y) =

O(|y|), for |y| → 0. This means that, to first order, the dispersion relation near k = K∗ is
a cone. This corresponds to the dispersion relation of the two-dimensional Dirac operator
(8), as it can be readily seen in the Fourier domain.

Consider a wave packet u0(x) = uε0(x) concentrated around a Dirac point K∗

uε0(x) =
√
ε(ψ0,1(εx)Φ1(x) + ψ0,2(εx)Φ2(x)) (22)

where Φj, j = 1, 2, are the Bloch functions at K∗ and the functions ψ0,j are some (complex)
amplitudes to be determined. Then the solution of the NLS (57), with initial conditions uǫ0
is expected to evolve to leading order in ε still as a modulation of Bloch functions,

uε(t, x) ∼
ǫ→0+

√
ε (ψ1(εt, εx)Φ1(x) + ψ2(εt, εx)Φ2(x) +O(ε)) , t > 0, x ∈ R

2 , (23)

and the amplitudes ψj solve the effective equation (5).

Given a Dirac point K∗ ∈ B, let µ∗ := µN (K∗) = µN+1(K∗) be the frequency at which
the conical crossing occurs. Consider then the NLS

(−∆+ V − µ∗)u = |u|2u , R
2 . (24)

As in (23), one thus looks for solutions to (24) of the form

uε(t, x) ∼
ǫ→0+

√
εe−tµ∗ (ψ1(εx)Φ1(x) + ψ2(εx)Φ2(x) +O(ε)) , t > 0, x ∈ R

2 . (25)

3.2. Derivation of the massless equation. The aim of this subsection is to formally
derive the effective Dirac equation for the amplitudes ψj appearing in (25) through a mul-
tiscale expansion (see e.g. [2, 21]).

Since the coefficients ψj(εx) and the Bloch functions Φj(x) vary on different scales, one
can consider x and y := εx, 0 < ε ≪ 1, as independent variables. Moreover, we look for
solution to (24) as formal power series in ε, as follows

uε =
√
εUε(x, y), Uε(x, y) = U0(x, y) + εU1(x, y) + ε2U2(x, y) + ... (26)

We moreover impose K∗-pseudoperiodicity with respect to x, i.e.

Uε(x+ v, y) = e−iK∗·vUε(x, y), ∀v ∈ Λ, x, y ∈ R
2. (27)

Similarly, we look for µ of the form

µ = µε = µ∗ + εµ1 + ε2µ2 + ... (28)

Rewriting (24) in terms of Uε and µε then gives
(
− (∇x + ε∇y)

2 + V (x)− µε

)
Uε(x, y) = ε |Uε(x, y)|2 Uε(x, y). (29)

Plugging (26,28) into (29) one finds a hierarchy of equations.
At order O(ε0) we obtain

(−∆x + V − µ∗)U0 = 0. (30)

Recall that kerL2
K∗

(−∆+ V − µ∗) = Span {Φ1,Φ2}, and then by (27) we have

U0(x, y) = ψ1(y)Φ1(x) + ψ2(y)Φ2(x), (31)
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where the amplitudes are to be determined solving the next equation in the formal ex-
pansion. Here L2

K∗

denotes square integrable functions satisfying the pseudo-periodicity
condition in (15).

The equation for O(ε) terms reads

(−∆x + V − µ∗)U1 = (2∇x · ∇y + µ1)U0 + |U0|2 U0. (32)

By Fredholm alternative, solvability of the above equation requires its right hand side to
be L2-orthogonal to the kernel of (−∆x + V − µ∗). Then the functions ψj are determined
imposing orthogonality to the Bloch functions Φk. For simplicity we deal with linear part
and the cubic term in the right hand side of (32) separately.

The linear terms can be calculated using the following lemma from [17]

Lemma 3.4. Let ζ = (ζ1, ζ2) ∈ C
2 be a vector. Then there exists λ ∈ C \ {0} such that we

have

〈Φk, ζ · ∇Φk〉L2(Ω) = 0, k = 1, 2,

2i〈Φ1, ζ · ∇Φ2〉L2(Ω) = 2i〈Φ2, ζ · ∇Φ1〉L2(Ω) = −λ (ζ1 + iζ2) ,

2i〈Φ2, ζ · ∇Φ1〉L2(Ω) = −λ(ζ1 − iζ2)

(33)

Notice that (∇x · ∇y)U0 =
∑2

j=1∇yψj · ∇xΦj and then applying Lemma 3.4 with ζ =
∇yΦj, j = 1, 2 we get

2i〈Φ1,∇yψ2 · ∇Φ2〉L2(Ω) = 2i〈Φ2,∇yψ2 · ∇Φ1〉L2(Ω) = −λ (∂y1 + i∂y2)ψ2,

2i〈Φ2,∇yψ1 · ∇Φ1〉L2(Ω) = −λ(∂y1 − i∂y2)ψ1

(34)

Thus we see that taking the L2(Ω) scalar product of the linear part in the right hand side
of (32) with the Bloch functions Φj gives the linear part of (5). We now want to show that
the cubic nonlinearity in (5) is obtained calculating the same product for the cubic term in
(32). By symmetry taking this projection many terms vanish. The cubic term reads

|U0|2 U0 =
∑

16j,k,l62

ψjψkψkΦjΦkΦl. (35)

Let us consider, for instance, the term ψ1ψ1ψ2Φ1Φ1Φ2 and then project it onto Φ1. We
compute

〈Φ1,Φ1Φ1Φ2〉L2(Ω) =

∫

Ω
Φ1(x)Φ1(x)Φ1(x)Φ2(x)dx

=x=R∗y

∫

RΩ
Φ1(R∗y)Φ1(R

∗y)Φ1(R
∗y)Φ2(R∗y)dy

∫

RΩ
τΦ1(y)τΦ1(y)τΦ1(y)τΦ2(y)dy

τ2
∫

Ω
Φ1(x)Φ1(x)Φ1(x)Φ2(x)dx = τ2〈Φ1,Φ1Φ1Φ2〉L2(Ω)

(36)

where R is the rotation matrix (12), and we used that RΦ1 = τΦ1 and RΦ2 = τΦ2 with
τ = exp(2iπ/3), see [17]. From (36) we get

(1− τ2)〈Φ1,Φ1Φ1Φ2〉L2(Ω) = 0,

and thus

〈Φ1,Φ1Φ1Φ2〉L2(Ω) = 0.
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Iterating this calculations one can check that
{
〈Φ1, |U0|2 U0〉L2(Ω) = (2β2|ψ1|2 + β1|ψ2|2)ψ1

〈Φ2, |U0|2 U0〉L2(Ω) = (β1|ψ1|2 + 2β2|ψ2|2)ψ2

(37)

thus recovering the cubic term in (5), with

β1 :=

∫

Ω
|Φ1|4dx =

∫

Ω
|Φ2|4dx, β2 :=

∫

Ω
|Φ1|2|Φ2|2. (38)

It is then easy to see that the stationary version of (5) (i.e. ∂tΞ1 = ∂tΞ1 = 0) appears as
compatibility condition for the solvability of (32), combining (34, 37) and taking µ1 = 0 in
(32).

3.3. Derivation of the effective mass tem. The same multiscale argument as in the
previous Section allows to derive the mass term in (5), induced by a suitable perturbation.

As shown in [17, Appendix], breaking the PT symmetry lifts the conical degeneracy in
the dispersion relation of a honeycomb Schrödinger operator (−∆+ V ) admitting Dirac
points. Let us consider the following equation

(−∆+ V + εW − µ∗) u = |u|2u, (39)

that is, we consider a potential perturbation of (24) where we add a linear termW breaking
parity. More precisely, we assume that W is odd

W (−x) = −W (x), ∀x ∈ R
2. (40)

In this case, compared to the analysis in the previous Section, we get an additional term
at order O(ε) corresponding to the potential εW in (39). Then we have to compute the
projections

〈WU0,Φk〉L2(Ω) =

2∑

j=1

ψj〈WΦj,Φk〉L2(Ω), k = 1, 2. (41)

Recall that
Φ2(x) = Φ1(−x), (42)

and this relation allows us to compute

〈WΦ2,Φ1〉L2(Ω) =

∫

Ω
(WΦ2) (x)Φ1(x)dx =

∫

Ω
W (x)Φ1(−x)Φ1(x)dx

=y=−x

∫

−Ω
W (−y)Φ1(y)Φ1(−y)dy = −

∫

Ω
(WΦ2) (y)Φ1(y)dy

= −〈WΦ2,Φ1〉L2(Ω),

(43)

where we have also used (40). We thus obtain

〈WΦ2,Φ1〉L2(Ω) = 〈WΦ1,Φ2〉L2(Ω) = 0. (44)

Moreover, arguing as in (43) one easily finds

〈WΦ1,Φ1〉L2(Ω) = −〈WΦ2,Φ2〉L2(Ω). (45)

and then
2∑

j=1

ψj〈WΦj,Φ1〉L2(Ω) = ψ1〈WΦ1,Φ1〉L2(Ω)

2∑

j=1

ψj〈WΦj,Φ2〉L2(Ω) = −ψ2〈WΦ1,Φ1〉L2(Ω).

(46)
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Assuming that m := 〈WΦ1,Φ1〉L2(Ω) > 0, we obtain the mass term in (5).

4. Proof of the main result

In this section, we prove the existence of branches of bound states for (1) that bifurcate
from the trivial solution at the positive band-edge of the spectrum of D. Those solutions
are constructed from bound states of a suitable nonlinear Schrödinger equation (57), which
(after scaling) gives the asymptotic profile as ω → m.

We start by rewriting (1) componentwise. Setting ψ = (ψ1, ψ2)
T , equation (1) becomes

the system
{ −i(∂1 − i∂2)ψ2 = (β1|ψ2|2 + 2β2|ψ1|2)ψ1 − (m− ω)ψ1

−i(∂1 + i∂2)ψ1 = −(2β2|ψ2|2 + β1|ψ1|2)ψ2 − (m+ ω)ψ2 ,
(47)

that can be regarded as a functional equation of the form

H(ψ1, ψ2) = 0 ,

where H : X ×X → L2(R2,C2) is the map defined by

H(ψ1, ψ2) =

(
−i(∂1 − i∂2)ψ2 − (β1|ψ2|2 + 2β2|ψ1|2)ψ1 + (m− ω)ψ1

−i(∂1 + i∂2)ψ1 + (2β2|ψ2|2 + β1|ψ1|2)ψ2 + (m+ ω)ψ2

)
,

with

X := H1(R2,C) . (48)

In what follows, we shall consider the subspace

Xr ⊂ X ×X (49)

given by functions of the form (6). For simplicity they will be denoted by (u, v), where
those functions are the radial factors in (6).

4.1. Rescaling the equation. Plugging the ansatz (6) in (47) leads to the follows system
for the real valued functions u, v





−u′ + u

r
= (β1u

2 + 2β2v
2)v − (m− ω)v

v′ = −(2β2u
2 + β1v

2)u− (m+ ω)u .
(50)

Now set ε := (m− ω), and consider the following rescaling

uε(r) = εf(
√
εr) , vε(r) =

√
εg(

√
εr) , r > 0 , (51)

so that, by (50), after some straightforward computations we find the equations for f(ρ), g(ρ):




f ′ +
f

ρ
= (εβ1f

2 + 2β2g
2)g − g

g′ = −(2β2ε
2f2 + β1εg

2)f − (2m− ε)f .

(52)

where we also used the fact that ε := m− ω and then m+ ω = 2m− ε.

Remark 4.1. The branch point of the solutions is given by ε = 0. The equivalence between
(50) and (52) is valid only for ε > 0, while (52) makes sense for arbitrary ε ∈ R.
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4.2. Solutions of the rescaled problem. Our goal is to apply the implicit function
theorem to prove the existence of a local branch of solutions to (52).

To this aim we rewrite reformulate the problem as follows. Define the map

F : R×Xr −→ L2(R)× L2(R) ,

with Xr in (49), and acting as

F(ε, uε, vε) :=


 f ′ +

f

ρ
− (εβ1f

2 + 2β2g
2)g + g

g′ + (2β2ε
2f2 + β1εg

2)f + (2m− ε)f


 (53)

Therefore, the original problem is equivalent to the following




(ε, uε, vε) ∈ R×Xr

uε, vε 6= 0

F(ε, uε, vε) = 0.

ε > 0 . (54)

Remark 4.2. In order to simplify the notation, without loss of generality, we take m = 1/2
and β2 = 1/2.

Proposition 4.3. There exists ε0 > 0 such that (54) admits a solution for ε ∈ (−ε0, ε).
Remark 4.4. The above proposition is equivalent to the main result stated in Theorem 1.1.
Then we equivalently prove the former.

4.2.1. Solutions for ε = 0. Take ε = 0. Looking for non-trivial solutions of (54) in Xr we
get 




f ′ +
f

ρ
= g3 − g

g′ = −f .
, (55)

see Remark 4.2. Then (f, g) solves the following nonlinear Schrödinger equation




−g′′ − 1

ρ
g′ − g3 + g = 0

f = −g′ .
. (56)

Since ∂2

∂ρ2 + 1
ρ

∂
∂ρ is the radial part of the two-dimensional Laplacian, one immediately rec-

ognizes that g must be a radial solution of the following elliptic equation

−∆U − U3 + U = 0 on R
2. (57)

It is well known that such equation admits a unique positive radial ground state solution
U , which is smooth and exponentially decaying at infinity [11, Thm. 8.1.5]. Given such
function, we shall consider the solution to (56) given by

(u0, v0) = (U, V ) , V = −U ′ . (58)

4.2.2. Solutions for small ε. In order to prove existence of solutions of (54) for small values
of ε we have to check the assumptions of the implicit function theorem.

It is not hard to verify that the map F is of class C1, and then we need to prove the
following

Lemma 4.5. The differential of F with respect to (u, v)-variables, D(u,v)F , evaluated at
(0, u0, v0) is an isomorphism.

The proof of this lemma requires the results that are contained in the following lemmas.

Lemma 4.6. The operator D(X,Y )F(0, u0, v0) : Xr → L2(R2,R2) is injective.
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Proof. We need to prove that ker{D(u,v)F(0, u0, v0)} is trivial. For this reason let us con-
sider the linearization of (55) at (0, u0, v0) and (h, k) ∈ kerD(u,v)F(0, u0, v0), so that

D(u,v)F(0, u0, v0)[h, k] :=


k

′ +
k

ρ
+ h− u20h

h′ + k


 = 0 (59)

Then h solves

−h′′ − 1

ρ
h′ − u20h+ h = 0

that is, h lies in the kernel of the linearization of (57) at the ground state solution U . By
know results [13], such kernel is empty and thus h ≡ 0 and k ≡ 0, proving the Lemma. �

Now we want to prove that D(u,v)F(0, u0, v0) is surjective, using the Fredholm alternative
[10, Thm. 6.6]. Namely, using classical arguments from perturbation theory of linear opera-
tors, the claim follows showing that D(u,v)F(0, u0, v0) is given by the sum of an isomorphism
and a compact operator.

By (59), let

D(u,v)F(0, u0, v0) = J +K(u0), (60)

where J,K(u0) : Xr → L2(R2,R2) are defined as

J [h, k] :=

(
k′ +

k

ρ
+ h, h′ + k

)T

, (61)

and

K(U)[h, k] := (u0h, 0)
T . (62)

Lemma 4.7. The operator J : Xr → L2(R2,R2) is an isomorphism.

Proof. The operator J is clearly continuous, so that we only need to prove injectivity and
surjectivity.

Step (i): J is injective. Assume (h, k)T ∈ Xr solves J [h, k] = 0. The argument in the
proof of Lemma 4.6 gives

−h′′ + 1

ρ
h′ + h = 0 ,

i.e.

−∆h+ h = 0 ,

so that multiplying by h and integrating by parts one immediately sees h ≡ 0. By (61) we
also get k ≡ 0.

Step (ii): J is surjective. Let a, b ∈ L2(R2). We want to prove that there exists (h, k)T ∈
Xr such that

J [h, k] = (a, b)T , (63)

that is, such that 



k′ +
k

ρ
+ h = a

h′ + k = b
,

Assuming that b ≡ 0, arguing as in Step (i), we have to find a weak solution h1 ∈ H1(R2)
of

−∆h1 + h1 = a . (64)

The existence of such function is an immediate application of the Lax-Milgram Lemma [10,
Cor. 5.8]. Then taking k1 = −h′1, the pair (h1, k1)T ∈ Xr solves (63) with b ≡ 0. The same
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argument, exchaging k and h, allows to find a solution (h2, k2)
T ∈ Xr of (63) with a ≡ 0.

By linearity of J we thus get the claim. �

Lemma 4.8. The operator K(u0) : Xr → L2(R2,R2) is compact.

Proof. Let
(
(hn, kn)

T
)
n
⊂ Xr be a bounded sequence.

Note that, up to subsequences,

(hn, kn) −→ (h, k) in L2
loc(R

2,R2). (65)

On the other hand, since the soliton u0 tends to zero at infinity, for all η > 0 there exists
Mη > 0 such that u0(x) < η if |x| > Mη . Thus,

‖K(u0)[hn, kn]−K(u0)[h, k]‖L2(R2) = ‖u20(hn − h)‖L2(R2\BMη )

+ ‖u20(hn − h)‖L2(BMη )
6 Cη2 + o(1), as n→ ∞.

where BMη := {|x| 6 BMη} ⊂ R
2. Then

lim
n→∞

‖K(u0)[hn, kn]−K(u0)[h, k]‖L2(R2) 6 Cη2, ∀η > 0,

so that the statement follows. �

Now, we can combine all the previous results to prove Proposition 4.5.

Proof of Proposition 4.5. Notice that D(X,Y )F(0, u0, v0) is clearly continuous, and it is in-
jective by Lemma 4.6. On the other hand, see (60), Lemmata 4.7 and 4.8 show that

D(X,Y )F(0, u0, v0) = J +K

is the sum of an isomorphism and of a compact operator. Then

D(X,Y )F(0, u0, v0) = J +K = J(I + J−1K) .

Since J is an isomorphism, the map (I+J−1K), which is of the form identity plus compact,
is also injective. Then the claim follows by Fredholm’s alternative [10, Thm. 6.6]. �

The proof of Theorem 1.1 immediately follows, as we can now prove Proposition 4.3.

Proof of Proposition 4.3. There holds F(0, u0, v0) = 0 and by Proposition 4.5, the differen-
tial D(u,v)F(0, u0, v0) is an isomorphism. Then the claim follows by the implicit function
theorem. �
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