Non-Hermitian lattices under semi-infinite boundary conditions sustain an extensive number of exponentially localized states, dubbed non-Hermitian quasi-edge modes. Quasi-edge states arise rather generally in systems displaying the non-Hermitian skin effect and can be predicted from the non-trivial topology of the energy spectrum under periodic boundary conditions via a bulk-edge correspondence. However, the selective excitation of the system in one among the infinitely many topological quasi-edge states is challenging both from practical and conceptual viewpoints. In fact, in any realistic system with a finite lattice size most of the quasi-edge states collapse and become metastable states. Here we suggest a route toward the selective and tunable excitation of topological quasi-edge states that avoids the collapse problem by emulating semi-infinite lattice boundaries via tailored on-site potentials at the edges of a finite lattice. We illustrate such a strategy by considering a non-Hermitian topological interface obtained by connecting two Hatano-Nelson chains with opposite imaginary gauge fields, which is amenable for a full analytical treatment.

Selective and tunable excitation of topological non-Hermitian quasi-edge modes

Stefano Longhi
2022-01-01

Abstract

Non-Hermitian lattices under semi-infinite boundary conditions sustain an extensive number of exponentially localized states, dubbed non-Hermitian quasi-edge modes. Quasi-edge states arise rather generally in systems displaying the non-Hermitian skin effect and can be predicted from the non-trivial topology of the energy spectrum under periodic boundary conditions via a bulk-edge correspondence. However, the selective excitation of the system in one among the infinitely many topological quasi-edge states is challenging both from practical and conceptual viewpoints. In fact, in any realistic system with a finite lattice size most of the quasi-edge states collapse and become metastable states. Here we suggest a route toward the selective and tunable excitation of topological quasi-edge states that avoids the collapse problem by emulating semi-infinite lattice boundaries via tailored on-site potentials at the edges of a finite lattice. We illustrate such a strategy by considering a non-Hermitian topological interface obtained by connecting two Hatano-Nelson chains with opposite imaginary gauge fields, which is amenable for a full analytical treatment.
2022
non-Hermitian skin effect
topological phases
wave self-healing
File in questo prodotto:
File Dimensione Formato  
generaREV.pdf

accesso aperto

Dimensione 801.38 kB
Formato Adobe PDF
801.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221228
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact