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Non-Hermitian lattices under semi-infinite boundary
conditions sustain an extensive number of exponentially-
localized states, dubbed non-Hermitian quasi-edge
modes. Quasi-edge states arise rather generally in
systems displaying the non-Hermitian skin effect
and can be predicted from the nontrivial topology
of the energy spectrum under periodic boundary
conditions via a bulk-edge correspondence. However,
the selective excitation of the system in one among
the infinitely-many topological quasi-edge states
is challenging both from practical and conceptual
viewpoints. In fact, in any realistic system with a
finite lattice size most of quasi-edge states collapse
and become metastable states. Here we suggest a
route toward the selective and tunable excitation
of topological quasi-edge states which avoids the
collapse problem by emulating semi-infinite lattice
boundaries via tailored on-site potentials at the edges
of a finite lattice. We illustrate such a strategy by
considering a non-Hermitian topological interface
obtained by connecting two Hatano-Nelson chains
with opposite imaginary gauge fields, which is
amenable for a full analytical treatment.

1. Introduction
Non-Hermitian topological physics [1–5] is attracting
a considerable interest since the past few years, with
a wealth of novel phenomena which do not have
any counterpart in corresponding Hermitian topological
systems (see [6–48] and references therein).
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The ability to experimentally implement and control non-Hermiticity using synthetic lattices
has been demonstrated using different physical platforms ranging from photonic [35,38,39,47,48],
acoustic [14,45] and micro mechanical [33,34] systems to topolectrical circuits [36,37]. A central
result of topological materials is the bulk-edge correspondence: when two materials with
different Bloch bulk topological invariants are interfaced, localized edge states emerge with
energies that lie within the energy gap of the surrounding bulk media [49,50]. However, such
a rather universal result is challenged in non-Hermitian systems, where the bulk-boundary
correspondence apparently breaks down [6,10,11] and localization of an extensive number of bulk
states at the edges is observed, a phenomenon dubbed the non-Hermitian skin effect [10,11,15].
In general a non-Hermitian lattice possesses two different types of topological edges states: the
conventional ones that have a Hermitian counterpart, and the non-Hermitian skin modes without
any Hermitian counterpart. This means that two different bulk-boundary correspondences can be
established in non-Hermitian topological systems [29]. The former one relates edge states to the
wave function bulk topological invariants, however the band topology should be described by the
non-Bloch band theory, where the Bloch wave vector is complex and varies over the generalized
Brillouin zone [18,19,29]. The latter bulk-boundary correspondence relates edge modes to the
spectral topology of the Bloch Hamiltonian over the ordinary Brillouin zone [26,30]. A nontrivial
spectral topology, as measured by a non-vanishing winding number W , results in the existence
of topological edge modes [1,26,30,42]. Experimental demonstrations of edge states in systems
displaying the non-Hermitians skin effect have been reported in recent works [33,35–38]. In
particular, localization of the excitation at the interface separating two non-Hermitian lattices
with different spectral topological winding numbers has been observed, even in the absence of
ordinary edge states, indicating the collapse of all eigenstates at the interface [35,38]. The non-
Hermitian skin effect is observable also in bulk systems via the wave packet drift [23].
A general result on bulk-edge correspondence in non-Hermitian systems has been established
by considering semi-infinite boundary conditions [1,26]. In non-Hermitian systems under open
boundary conditions, the skin edge states provide a complete set of states (a basis) to expand any
state in the Hilbert space. The number of skin edge states thus grows linearly with the system
size. A somehow different scenario is observed in the (less physical) semi-infinite boundary
conditions: in this case an extensive number of quasi-edge states, exponentially localized at the
single edge of the lattice, are found [1,26], which are topologically characterized by a non-
vanishing spectral winding number W [26]. Unlike skin edge states under open boundary
conditions, quasi-edge states under semi-infinite boundary conditions provide an over-complete
set of states, and contain as a special subset the skin edge states [26]. Clearly, a non-Hermitian
system displaying the non-Hermitian skin effect also shows the quasi-edge modes under semi-
infinite boundary conditions. Thus, in addition to the bulk signatures [23], the quasi-edge modes
provide a signature of the non-Hermitian skin effect. However, a rather challenging and still open
question is to find a way to selective excite a single quasi-edge mode, among the infinitely many
ones sustained by the system under semi-infinite boundaries. The difficulty is not only practical,
due to the complication of realizing semi-infinite boundaries and preparing the system in a pure
edge state, but also conceptual. To clarify this point, let us consider as as example a single-band
one-dimensional lattice with a nontrivial spectral topology, i.e. with a Bloch Hamiltonian H(k)

whose spectrum describes a closed loop in complex energy plane as k spans the ordinary Brillouin
zone. A prototypal example is provided by the clean Hatano-Nelson model [1,51], where H(k)

describes an ellipse in complex energy plane. According to the bulk-edge correspondence, for
any complex energy E internal to the loop with a negative winding number W (E)< 0 there
exist |W (E)| edge states localized at the left boundary of the lattice under semi-infinite boundary
conditions [1,26]. However, as soon as a right boundary is introduced, the edge states collapse
and only those with complex energies belonging to the Hamiltonian H(k), with k varying over
the generalized Brillouin zone, survive [1]. This result makes the physical relevance of such quasi-
edge modes questionable, suggesting that most of them are metastable states that can be observed
only transiently for a short time [1].
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In this work we show that quasi-edge modes can be selectively and stably excited in a finite-size
non-Hermitian lattice from the free dynamical evolution of the system under initial single-site
edge excitation, provided that energy at the edges is judiciously supplied to the system. Basically,
complex on-site potentials are added at the edges of a finite-size interface, so as to emulate semi-
infinite boundary conditions to stabilize a target quasi-edge state. We illustrate this major result
by considering quasi-edge modes in the Hatano-Nelson model [1,26,51–53], since it provides the
simplest system displaying the non-Hermitian skin effect amenable for a full analytical treatment
and accessible to the experiments using synthetic lattices. Specifically, we show selective and
tunable excitation of quasi-edge states at the interface (domain wall) between two Hatano-Nelson
chains with opposite imaginary gauge fields [46].

2. Quasi-edge modes in the Hatano-Nelson topological interface
The clean Hatano-Nelson model describes the hopping dynamics of a quantum particle on a
one dimensional lattice with asymmetry in the left/right hopping amplitudes induced by an
imaginary gauge field [1,51,53]. Assuming rather generally an inhomogeneous imaginary gauge
field h= h(n), the Schrödinger equation for the wave amplitudes ψn at the various lattice sites
reads [46]

i
dψn
dt

=∆ {exp[h(n+ 1)]ψn+1 + exp[−h(n)]ψn−1} (2.1)

where ∆ exp(±h) are the left/right hopping amplitudes.
Let us first briefly recall the topological properties of the Hatano-Nelson model in the
homogeneous case h(n) = h constant [1,26]. Under periodic boundary conditions (PBC), with the
Ansatz ψn = exp[ikn− iH(k)t] the Hamiltonian in Bloch space reads H(k) = 2∆ cosh(h+ ik),
where −π≤ k < π is the Bloch wave number. The corresponding energy spectrum describes a
closed loop (an ellipse) in complex plane [Fig.1(a)], defined by the equation(

Re(H)

2∆ coshh

)2

+

(
Im(H)

2∆ sinhh

)2

= 1. (2.2)

The ellipse is travelled clockwise for h< 0, and counter-clockwise for h> 0. In the bulk of
the lattice, a backward (forward) drift current is observed for h> 0 (h< 0) with a velocity
v= 2∆ sinh |h| [52]. The spectral topology is described by the winding number W (E) [1,26]

W (E) =
1

2πi

∫π
−π

dk
d log {H(k)− E}

dk
(2.3)

for a given complex energy E. Clearly, one has W (E) = 0 when E is external to the ellipse,
while W (E) = h/|h|=±1 when E is internal to the ellipse. A bulk-edge correspondence can be
established for the edge modes under the semi-infinite boundary conditions (SIBC) [1,26]: for
any complex energy E, there are exactly |W (E)| edge eigenstates with eigenenergy E, which are
exponentially localized at the left edge of the semi-infinite lattice for W (E)< 0, or at the right
edge of the semi-infinite lattice for W (E)> 0. Therefore, under SIBC the continuous set of the
quasi-edge eigenstates entirely fills the interior of the ellipse. Under open boundary conditions
(OBC), the energy spectrum collapses to the segment (−∆,∆) on the real axis [Fig.1(a)], and thus
only a subset of edge modes on an open line survive [1,26].
Let us now consider the Hatano-Nelson topological interface [46], where two Hatano-Nelson
lattices with different values of the imaginary gauge field are connected [Fig.1(b)]. Specifically,
we assume equal but opposite values of the gauge fields by letting in Eq.(2.1) h(n) =−h< 0

for n≤ 0 and h(n) = h> 0 for n> 0. Clearly, for each of the two Hatano-Nelson chains the
PBC energy spectrum is described by the same ellipse in complex energy plane [Eq.(2.2)], but
the two ellipses are travelled in opposite directions [Fig.1(b)], leading to opposite values of the
winding numbers W1(E) =−W2(E) = 1 for any energy E in the interior of the ellipse while
W1(E) =W2(E) = 0 for any energy E in the exterior of the ellipse. According to the bulk-
boundary correspondence, exponentially-localized topological interface modes do exist at the
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interface, for infinitely-extended chains at both sides, at any energyE in the interior of the ellipse,
corresponding to different topological numbers W1 6=W2 [46]. The explicit form of the interface
modes can be readily obtained and reads

ψn = exp(ikn+ µn− h|n| − iEt) (2.4)

where −π≤ k≤ π, −h< µ< h for localization, and

E = 2∆ cosh(µ+ ik) (2.5)

is the complex energy of the interface mode. As the real parameters k and µ are varied, the

Figure 1. (a) Schematic of the Hatano-Nelson lattice with asymmetric hopping amplitudes∆ exp(±h). The PBC energy

spectrum is an ellipse [Eq.(2.2)] in complex energy plane (right panel), which is traveled clockwise for h< 0 and counter-

clockwise for h> 0. For any complex energy EB in the interior of the ellipse, the winding number W (EB) is 1 for h> 0

and −1 for h< 0, while when EB lies in the exterior of the ellipse one has W (EB) = 0. According to the bulk-edge

correspondence, the interior of the ellipse (shaded area in the figure) corresponds to the energies of quasi-edge states

under SIBC. Under OBC, the energy spectrum and corresponding skin modes collapse to the segment (−∆,∆) on the

real energy axis. (b) A topological interface obtained connecting two Hatano-Nelson chains with imaginary gauge fields

−h (for n≤ 0) and h (for n> 0). The right panel shows the two overlapped ellipses, corresponding to the PBC energy

spectra of the two bulk lattices, which are traveled in opposite directions. According to the bulk-edge correspondence,

interface states do exist for any complex energyE in the interior of the ellipse (shaded area in the figure), whereW1(E) 6=
W2(E).

energies E =E(k, µ) of the interface modes fill the interior of the ellipse. A main open question
arises: is it possible to selectively prepare the system in one of the above topological interface
(quasi-edge) modes? This question is not just merely concerning the practical feasibility of
exciting the system in the interface mode, rather it regards the true physical relevance of such
quasi-edge states [1]. In fact, in a realistic one-dimensional system, such as in a photonic lattice,
the number of lattice sitesN is always finite and unavoidably open or periodic boundaries usually
appear at the edges. Let us consider a finite lattice with sites from n=−N1 to n=N2, with
integersN1,2 > 0 possibly large andN =N1 +N2 + 1. If we assume, for example, open boundary
conditions (i.e. ψn = 0 for n>N2 and n<−N1), in the thermodynamic limit N1,2→∞ only a
one-dimensional part of the interface states survive, which are picked out from the interface-state
continuum, namely the edge states with real energies E on the segment (−∆,∆), corresponding
to µ= 0 and−π≤ k≤ π. All other interface modes thus disappear in a finite-size system, although
they can be observed for short times and therefore dubbed quasi-edge modes in [1]. Examples of
quasi-edge states in a finite-size topological interface will be presented in Sec.4. Here we show
that such quasi-edge localized modes can survive, i.e. they can be stabilized, even in finite-sized
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systems provided that suitable on-site complex potentials, which supply or take energy from the
system, are added at the edges of the chain. The main idea is that the skin edge state (2.4) is
an exact eigenstate of the Hamiltonian in the finite-size system with open boundary conditions
provided that the following on-site potentials are added

V−N1
=∆ exp(−ik − µ) , VN2

=∆ exp(ik + µ). (2.6)

at the two edges n=−N1 and n=N2 of the lattice. Such complex on-site potentials basically
supply energy to the system on one edge (the one with positive imaginary part of the potential,
corresponding to gain) and take energy from the system at the other edge (the one with negative
imaginary part of the potential, corresponding to loss), effectively emulating an infinitely-
extended topological interface. This simple observation suggests one that, after judicious tailoring
of the complex on-site potentials at the edges of a finite-size topological interface, it might be
possible to stabilize and somehow to selectively excite one among the various edge states of the
infinitely-extended interface. The main result of this work, which is proven in the next section,
is that the topological interface state (2.4) is obtained from the asymptotic dynamical evolution
in the finite-size interface lattice with on-site potentials tailored according to Eq.(2.6), initially
excited in the single edge site (either the left or right edge site), provided that Im(E)> 0. This
means that, using a finite-size lattice with tailored complex potentials at the two edges, we can
selectively excite any one of the topological interface state in the upper half area of the ellipse of
Fig.1(b), where Im(E)> 0, but not the topological edge states with energies in the lower half area.

3. Selective excitation of topological interface modes
Let us consider a finite-size Hatano-Nelson topological interface with open boundary conditions,
extended from n=−N1 to n=N2 , comprising N =N1 +N2 + 1 sites with the topological
interface located at n= 0, i.e. with h(n) =−h< 0 for n≤ 0 and h(n) = h> 0 for n> 0. We assume
that complex on-site potentials V−N1

and VN2
, defined by Eq.(2.6), are added at the two edges of

the lattice at sites n=−N1 and n=N2, respectively. The evolution equations of the amplitudes
ψn(t) in the finite lattice then read

i
dψn
dt

=∆ {exp[h(n+ 1)]ψn+1 + exp[−h(n)]ψn−1}+ (V−N1
δn,−N1

+ VN2
δn,N2

)ψn(t) (3.1)

(n=−N1,−N1 + 1, ..., 0, 1, ..., N2) with the open boundary conditions ψn(t) = 0 for n<−N1

and n>N2. Without loss of generality, we can assume µ< 0, i.e. |V−N1
|>∆ and |VN2

|<∆, as
the other case µ≥ 0 is simply obtained by reversing left and right edges of the lattice. The central
result of this work is provided by the following:
Theorem. Let us indicate by ψn(t) the evolution of the probability amplitudes in the finite-size
lattice [Eq.(3.1)] with the initial condition

ψn(0) = δn,−N1
, (3.2)

corresponding to the excitation of the left edge site of the lattice. Then ψn(t) asymptotically
evolves toward the topological interface mode (2.4), i.e. ψn(t)∼ exp(ikn+ µn− h|n| − iEt) as
t→∞, provided that −h< µ< 0 and Im(E)> 0, where E = 2∆ cosh(µ+ ik) is the complex
energy of the topological skin mode.
In order to prove the above theorem, it is worth first introducing the non-unitary gauge
transformation

ψn(t) =

{
cn(t) n≤ 0

cn(t) exp(−2hn) n≥ 0
(3.3)

and to rescale the time variable t so as∆= 1. The non-unitary gauge transformation (3.3) basically
eliminates the topological interface, making the imaginary gauge field uniform all along the finite-
size lattice. In fact, under the transformation (3.3) and with ∆= 1 the wave amplitudes cn(t)
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satisfy the following coupled equations

i
dcn
dt

= exp(−h)cn+1 + exp(h)cn−1 + (V−N1
δn,−N1

+ VN2
δn,N2

)cn (3.4)

(n=−N1,−N1 + 1, ..., 0, 1, ...N2) with the open boundary conditions cn(t) = 0 for n<−N1, n>
N2 and with the initial condition

cn(0) = δn,−N1
. (3.5)

Note that, after the gauge transformation (3.3), the interface state (2.4) takes the form

c
(skin)
n (t) =A exp[(ik + µ+ h)(n+N1)− iEt] (3.6)

so that to prove the theorem we need to show that

lim
t→∞

ε(t) = 0 (3.7)

for a suitable amplitude A, where ε(t) is the deviation function defined by

ε(t)≡ ‖cn(t)− c
(skin)
n (t)‖2

‖c(skin)n (t)‖2
=

∑N2

n=−N1
|cn(t)− c(skin)n (t)|2∑N2

n=−N1
|c(skin)n (t)|2

. (3.8)

The analytical solution cn(t) to Eqs.(3.4) with the initial condition (3.5) can be obtained using the
Laplace transform method (see, for instance, [54]). After introduction of the Laplace transform
ĉn(s) of the wave amplitude cn(t)

ĉn(s) =

∫∞
0
dtcn(t) exp(−st) (3.9)

with Re(s)> η > 0, from Eqs.(3.4) and (3.5) one obtains

(is− V−N1
δn,−N1

− VN2
δn,N2

)ĉn(s)− t1ĉn+1(s)− t2ĉn−1(s) = iδn,−N1
(3.10)

where we have set

t1 ≡ exp(−h) , t2 ≡ exp(h). (3.11)

Equation (3.10) is a linear algebraic system, that can be solved for ĉn(s) (−N1 ≤ n≤N2) by the
Cramer′s rule. As shown below, for our purposes it is enough to calculate ĉ−N1

(s), which takes
the form

ĉ−N1
(s) =

i

is− V−N1
−ΣN (s)

(3.12)

where the self-energy ΣN (s) is derived in Appendix A and reads

ΣN (s) =
(is− VN2

) sin[(N − 1)θ]− sin[(N − 2)θ]

(is− VN2
) sin(Nθ)− sin[(N − 1)θ]

. (3.13)

In the above equation, we introduced the complex angle θ via the relation

2 cos θ= is. (3.14)

Once ĉ−N1
(s) has been found, the corresponding wave amplitude c−N1

(t) is obtained after
inversion as a contour integral in complex s plane (Bromwich integral)

c−N1
(t) =

1

2πi

∫
B
ds exp(st)ĉ−N1

(s) (3.15)

where the Bromwich path B is the horizontal contour Re(s) = η in the complex plane and η > 0 is
chosen so that all singularities of ĉn(s) are below B (Fig.2).
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To calculate the Bromwich integral, let us first consider theN→∞ limit. Assuming the additional
constraint Im(θ)> 0, the self-energy ΣN (s) converges to the simple function

Σ∞(s) = exp(iθ) (3.16)

and thus
ĉ−N1

(s) =
i

is− V−N1
−Σ∞(s)

=
i

exp(−iθ)− V−N1

. (3.17)

Note that, owing to the constraint Im(θ)> 0, the self-energy Σ∞(s) shows a branch cut on the
segment I of the imaginary axis defined by s= iω, with −2≤ ω≤ 2 [Fig.2(a)]. From Eqs.(3.14)
and (3.17), taking into account that V−N1

= exp(−ik − µ) and that µ< 0, it readily follows that
c−N1

(s) has a single pole at
s= sp =−iE, (3.18)

whereE = 2 cosh(µ+ ik). Provided that Im(E)> 0, the pole lies above the branch cut. In this case
we can compute the Bromwich integral by deforming the contour B as shown in Fig.2(a), so that
one has

c−N1
(t) =

1

2πi

∫
H
ds exp(st)ĉ−N1

(s) +
1

2πi

∫
σ
ds exp(st)ĉ−N1

(s) (3.19)

where the Hankel path H encircles the branch cut I while σ encircles the pole at s= sp. Since
Re(sp)> 0, the latter contribution to the integral dominates over the first contribution for long
times, and can be readily computed from the residue of ĉ−N1

(s) at s= sp. This yields

c−N1
(t)∼A exp(−iEt) (3.20)

where
A= 1− 1

V 2
−N1

(3.21)

The Hankel path contribution provides a correction to Eq.(3.20), however it remains bounded as
t→∞ and so it can be neglected after an initial transient. Once we have computed the asymptotic
behavior of c−N1

(t) at long times, we can directly calculate the asymptotic form of all other
amplitudes cn(t) from Eqs.(3.4) and (3.20) by an iterative procedure using the relations

cn+1(t) = i exp(h)
dcn
dt
− V−N1

exp(h)cn(t) (n=−N1) (3.22)

cn+1(t) = − exp(2h)cn−1(t) + i exp(h)
dcn
dt

(n>−N1) (3.23)

This yields
cn(t)∼A exp[(ik + µ+ h)(n+N1)− iEt] (3.24)

which is valid in the long time limit. From a comparison of Eqs.(3.6) and (3.24) it then readily
follows that limt→∞ ε(t) = 0, which proves the theorem in the N→∞ limit.
In a topological interface with finite N , a similar analysis can be performed. In this case the self-

energy ΣN (s) is given by Eq.(3.13) and after some straightforward calculations ĉ−N1
(s) takes the

form

ĉ−N1
(s) =

sin[(N + 1)θ]− VN2
sin(Nθ)

(s− sp) sin[(N + 1)θ]
(3.25)

where sp is given by Eq.(3.18). Clearly, ĉ−N1
(s) shows (N + 1) poles: one pole is located exactly at

s= sp =−iE, like in the N→∞ limit, whereas the other N poles are obtained at the angles θl =
lπ/(N + 1), i.e. sl =−2i cos θl =−2i cos[lπ/(N + 1)] (l= 1, 2, 3, .., N ). Note that such additional
poles lie on the segment I of the imaginary axis, and become dense on I asN→∞. In other words,
the branch cut I of ĉ−N1

(s) in the N→∞ limit is replaced for finite N by a dense set of poles on
I, as shown in Fig.2(b). The Bromwich integral is then given by the sum of the residues arising
from the (N + 1) poles. Assuming Im(E)> 0, the dominant pole is the one at s= sp =−iE, and
thus after an initial transient the asymptotic form of c−N1

(t) is again given by Eqs.(3.20). Once the
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1
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Figure 2. Integration paths in complex s plane used for the calculation of the temporal behavior of the amplitude c−N1 (t)

at the left edge site of the topological interface. The horizontal bold line is the Bromwich path B with Re(s) = η and η > 0

large enough such that all the singularities of ĉ−N1
(s) lie below the line B. (a) The case of a topological interface in the

N→∞ limit. In this case ĉ−N1
(s) shows a single pole at s= sp =−iE, which lies above the imaginary axis provided

that Im(E)> 0, and a branch cut along the segment I on the imaginary axis, from s=−2i to s= 2i (solid bold segment

in the figure). The Bromwich path can be deformed to σ
⋃

H, where σ encircles the pole s= sp whereas the Hankel

path H encircles the branch cut. (b) The case of a topological interface with a finite number N of lattice sites. In this case

ĉ−N1 (s) shows (N + 1) poles and no branch cuts. The dominant pole is at s= sp =−iE, whereas the other N poles

sl =−2i cos[πl/(N + 1)] (l= 1, 2, 3, ..., N ) lie on the imaginary axis, between s=−2i and s= 2i. The Bromwich

path can be deformed to the set of closed loops that encircle the various poles.

asymptotic form of c−N1
(t) has been determined, the asymptotic form of the other amplitudes

cn(t) is obtained from the recursive relations

cn+1(t) = i exp(h)
dcn
dt
− V−N1

exp(h)cn(t) (n=−N1) (3.26)

cn+1(t) = − exp(2h)cn−1(t) + i exp(h)
dcn
dt

(−N1 <n≤N2 − 1) (3.27)

(3.28)

This yields again the asymptotic form Eq.(3.24) for cn(t), thus proving the theorem for finite N as
well.
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Figure 3. Quasi-edge (metastable) topological interface states in a finite-size Hatano-Nelson interface with open

boundary conditions for parameter values ∆= 1 and h= 0.1. The system is initially excited in the skin interface state

ψn(0) = exp(ikn+ µn− h|n|) with µ=−0.05 and k=−π/3. The panels show on a pseudo color map the temporal

evolution of the normalized amplitudes |ψn(t)|/
√∑

n |ψn(t)|2. In (a-c) the edge on-site potentials V−N1 and VN2

vanish, so as the topological skin state survives only for a time t∗, after which it is fully destroyed owing to finite lattice size

effects. The time scale t∗ increases as the system size N1,2 increases [N1 = 120, N2 = 60 in (a); N1 = 90, N2 = 40

in (b); N1 = 50, N2 = 30 in (c)]. As soon as the appropriate potentials V−N1
= exp(−ik − µ) and VN2

= 1/V−N1

are added at the left and right edge sites of the lattice, the topological skin state is stabilized, as shown in panel (d).
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It should be mentioned that, for a finite value of N , the topological interface state can be
dynamically generated for a rather arbitrary initial excitation condition, i.e. not necessarily for
a single-site excitation. In fact, in this case the poles of ĉ−N1

(s), depicted in Fig.2(b), correspond
to the complex eigenenergies of the finite-lattice Hamiltonian of the system. Since the dominant
pole, i.e. the pole with the largest imaginary part of the energy, is s= sp, and the interface state
is the corresponding eigenvector of the finite-lattice Hamiltonian, it readily follows that after an
initial transient the dynamics of the system is attracted toward the interface state, for a rather
arbitrary initial excitation of the system.

4. Numerical simulations
We checked the predictions of the theoretical analysis by extended numerical simulations of
the coupled equations (3.1) in time domain using an accurate fourth-order variable-step Runge-
Kutta method. Some illustrative examples are shown in Figs.3,4 and 5 and 6. In the simulations
of Figs.3,4, and 5 we assumed the parameter values ∆= 1, h= 0.1, µ=−0.05 and k=−π/3,
corresponding to the eigenenergy E = 2∆ cosh(µ+ ik) = 1.0013 + 0.0866i of the interface state
and to the on-site potentials V−N1

= 0.5256 + 0.9104i, VN2
= 1/VN1

= 0.4756− 0.8238i at the left
and right lattice edges, respectively. Note that, since Im(V−N1

)> 0 (gain) and Im(VN2
)< 0 (loss),

energy is basically supplied to the lattice at the left edge site n=−N1, while it is taken from the
lattice at the right edge site n=N2. Figures 3(a-c) illustrate the concept of quasi-edge modes [1],
i.e. the metastability of the topological interface state in a finite lattice for a few increasing
values of N1,2 when we set V−N1

= VN2
= 0. The results are obtained integrating Eq.(3.1) with

V−N1
= VN2

= 0 and assuming as an initial condition ψn(t= 0) the topological interface state,
defined by Eq.(2.4) with truncation at the edges. The figures clearly show that, for V−N1

= VN2
= 0

the dynamics looks just like the one of an eigenstate up to some time t∗, above which the state is
completely destroyed owing to edge effects. The survival time t∗ of the quasi eigenstate increases
with the system size N1,2, according to the analysis of Ref. [1]. As one can clearly see from
Figs.3(a-c), the dominant perturbation that destroys the interface state comes from the cut of the
interface mode at the left edge. This is because the localization length of the edge mode is much
longer in the n< 0 half-space than in the n> 0 half-space and N1 ∼N2. The small perturbation
at the left edge introduced by lattice truncation propagates forward, toward the interface, while
being amplified owing to the imaginary gauge field h [23,52], until at the time t∼ t∗ it reaches
the interface region near n= 0, destructively interferes with the unperturbed interface state and
fully destroys it. At subsequent times, boundary effects arising from the right boundary are
also clearly visible [Fig.3(c)]: the initial perturbation reaches the right edge and then propagates
backward after being reflected, forming a complex interference pattern. A similar scenario, with
the dominant perturbation coming from the right edge of the lattice and propagating backward,
would be observed for an interface state with a localization length much longer in the n> 0 half-
space than in the n< 0 half-space. As shown in Fig.3(d), stabilization of the topological interface
state is instead observed when we add the appropriate on-site potentials V−N1

and VN2
at the

lattice edges, since such additional on-site potentials basically emulate the infinite lattice limit.
The most important result provided by the theorem stated in Sec.3 is that the interface state can
be dynamically generated by initial single-site excitation of the lattice. This is shown in Fig.4,
where the formation and stabilization of the topological interface mode is clearly demonstrated,
after an initial time transient, when the on-site potentials V−N1

and VN2
are added at the lattice

edges. In particular, according to the theoretical predictions the deviation function ε(t), defined
by Eq.(3.8), decays toward zero, indicating the convergence of ψn(t) to the topological interface
eigenstate ψ(skin)

n (t). As we change the values V1 = exp(−ik − µ) and V2 = 1/V1 so as to meet
the conditions of the main theorem stated in previous section, i.e. −h< µ< 0 and Im(E)> 0,
we can selectively generate and tune the dynamically-generated topological interface mode. It
should be noted that, since the interface state corresponds to the eigenstate of the finite-lattice
Hamiltonian with the highest imaginary part of energy, it can be dynamically excited for a
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Figure 4. Dynamical formation of the topological interface skin state in a finite Hatano-Nelson lattice with open

boundary conditions for parameter values ∆= 1 and h= 0.1. The system is initially excited at the left edge site,

and on-site potentials V−N1
= exp(−ik − µ) and VN2

= 1/V−N1
are added at the left and right edge sites of

the lattice (µ=−0.05, k=−π/3). (a) Temporal evolution on a pseudo color map of the normalized amplitudes

|ψn(t)|/
√∑

n |ψn(t)|2. (b) Behavior of the deviation function ε(t). (c) Poles of ĉ−N1
(s) (circles) in the complex s

plane. The topological edge mode arises from the dominant pole sp =−iE = 0.0866− 1.0013i of ĉ−N1
(s).
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Figure 5. Same as Fig.4, but for V−N2
= 0.

rather arbitrary initial excitation of the lattice (not necessarily in a single site). Moreover, in
some cases the interface state can be generated even when the on-site potential is added to the
left edge site, supplying energy (gain) to the lattice, but not at the right edge, i.e. by assuming
V−N1

= exp(−ik − µ) and VN2
= 0. This is shown in Fig.5. In this case, the location of the (N + 1)

poles of the Laplace transform ĉ−N1
(s), shown in Fig.5(c), clearly deviates from the distribution

predicted by the theoretical analysis [Fig.2(b) and Fig.4(c)]; in particular the dense poles on the
imaginary s axis shift toward the Re(s)> 0 half plane, however a dominant pole very close to the
theoretical value sp =−iE survives. This explains why, even though V−N2

= 0, the topological
interface mode can be dynamically generated after an initial transient, as a result of the dominant
pole contribution to ĉ−N1

. It should be noted that such a result, i.e. excitation of the topological
interface mode with only the left on-site complex potential, is very appealing from a practical
viewpoint, since it requires just to tune the potential (gain and on-site energy offset) of one site of
the lattice. However, this is not possible in all cases, since it requires that the perturbation VN2

= 0

does not substantially change the position of dominant poles of ĉ−N1
(s). An example is shown in

Figs.6 and 7, where in this case stabilization of the topological mode strictly requires both on-site
potentials at the two edges.
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Figure 6. Same as Fig.4, but for µ=−0.02 and k=−π/3.
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Figure 7. Same as Fig.5, but for µ=−0.02 and k=−π/3. Note that in this case the vanishing of VN2
largely perturbs

the position of poles of c−N1 (s) in the complex s plane, and the topological interface state cannot be dynamically

generated. In panel (c) sp =−iE is the position of the dominant pole predicted by the theoretical analysis in the ideal

case VN2
= 1/V−N1

.

5. Conclusion
To conclude, in this work we suggested a route toward the selective excitation of topological
edge states in a finite-size lattice, based on a judicious tailoring of the complex on-site potentials
at the lattice edges. Remarkably, the edge state is dynamically generated by single-site edge
excitation of the lattice after an initial transient. Our results indicate that a double-continuum
set of quasi-edge states, predicted to exist in semi-infinite non-Hermitian systems displaying
the non-Hermitian skin effects, can be stabilized by the edge on-site potentials, preventing
their disruption that one would observe in a finite lattice geometry [1]. The method has been
illustrated by considering quasi-edge modes at a topological Hatano-Nelson interface, which
enables for a full analytical treatment, however the stabilization strategy should be feasible for
an extension to other non-Hermitian lattice models: the basic idea is to emulate a semi-infinite
geometry in a finite-size lattice by adding suitable complex on-site potentials at the truncated
edge. The ability of generating and stabilizing topological quasi-edge states sheds new light onto
the physical relevance and robustness of such states, provides a signature of the non-Hermitian
skin effect (in addition to the bulk signatures [23]), and could be of potential relevance in future
sophisticated applications of non-Hermitian edge modes. For example, topological edge modes
in non-Hermitian systems enjoy the fantastic property of being self-healing waves, i.e. the can
self-reconstruct their shape after being scattered off by an obstacle [55]. Clearly, to demonstrate
and harness such a remarkable property in any application one should be able to stably generate
and possibly tune such edge states.
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A. Derivation of the self-energy
The Laplace transform ĉ−N1

(s) of the wave amplitude c−N1
(t) at the edge site n=−N1of the

lattice is obtained from the solution of the linear system Eq.(3.10). Using the Cramer′s rule, one
can write

ĉ−N1
(s) =

iPN (s)

(is− V−N1
)PN (s)− t1t2PN−1(s)

=
i

(is− V−N1
)− t1t2PN−1(s)/PN (s)

(A 1)

where PN (s) is N ×N determinant

PN (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

is −t1 0 0 0 ... 0 0 0 0 0

−t2 is −t1 0 0 ... 0 0 0 0 0

0 −t2 is −t1 0 ... 0 0 0 0 0

... ... ... ... ... ... ... ... ... ... ...

0 0 0 0 0 0 ... −t2 is −t1 0

0 0 0 0 0 0 ... 0 −t2 is −t1
0 0 0 0 0 0 ... 0 0 −t2 is− VN2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A 2)

Taking into account that t1t2 = 1, one obtains

ĉ−N1
(s) =

i

is− V−N1
−ΣN (s)

(A 3)

where the self-energy is defined by

ΣN (s) =
PN−1(s)

PN (s)
. (A 4)

To calculate the self-energy, we need to compute the determinant PN (s). Expanding the
determinant from the last row, it can be readily shown that

PN (s) = (is− VN2
)QN−1 − t1t2QN−2(s) (A 5)

where QN (s) is the determinant of a N ×N tridiagonal Toeplitz matrix, namely

QN (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

is −t1 0 0 0 ... 0 0 0 0 0

−t2 is −t1 0 0 ... 0 0 0 0 0

0 −t2 is −t1 0 ... 0 0 0 0 0

... ... ... ... ... ... ... ... ... ... ...

0 0 0 0 0 0 ... −t2 is −t1 0

0 0 0 0 0 0 ... 0 −t2 is −t1
0 0 0 0 0 0 ... 0 0 −t2 is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A 6)

The determinant QN (s) can be readily calculated from the recursive relation QN (s) =

isQN−1(s)− t1t2QN−2(s) with Q0(s) = 1, Q1(s) = is. Taking into account that t1t2 = 1 one
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obtains

QN (s) =
sin(N + 1)θ

sin θ
(A 7)

where we introduced the complex angle θ via the relation

2 cos θ= is. (A 8)

Substitution of Eq.(A 7) into Eq.(A 5), one finally obtains the following form of the self-energy
ΣN (s) [Eq.(A 4)]

ΣN (s) =
(is− VN2

) sin[(N − 1)θ]− sin[(N − 2)θ]

(is− VN2
) sin(Nθ)− sin[(N − 1)θ]

. (A 9)
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