This article presents an optimal distributed energy resource management system for a smart grid connected to photovoltaics, battery energy storage, and an electric vehicle aggregator. These management systems are one of the key factors for the optimal control of power converters connected to the grid. The proposed management system includes the communication architecture necessary for realizing the information flow between the individual control of the distributed generators and the master supervisory control algorithm. The work carried out on two levels is first to design a control strategy for energy management and validate it with the grid in real-time hardware-in-the-loop simulation integrating the IEC61850 communication layer and physical intelligent electronic devices. The second is to analyze the vulnerabilities of the designed methodology for cybersecurity threats explicitly with the extension of IEC61850 to electric vehicle aggregators for communication with the master energy management. A man-in-the-middle attack conducted in the supervisory communication layer enabled us to investigate the effects of such an attack on the performance and operation of the smart electric grid.

Analysis and Design of a Smart Controller for Managing Penetration of Renewable Energy Including Cybersecurity Issues

Harshavardhan Palahalli;Marziyeh Hemmati;Giambattista Gruosso
2022-01-01

Abstract

This article presents an optimal distributed energy resource management system for a smart grid connected to photovoltaics, battery energy storage, and an electric vehicle aggregator. These management systems are one of the key factors for the optimal control of power converters connected to the grid. The proposed management system includes the communication architecture necessary for realizing the information flow between the individual control of the distributed generators and the master supervisory control algorithm. The work carried out on two levels is first to design a control strategy for energy management and validate it with the grid in real-time hardware-in-the-loop simulation integrating the IEC61850 communication layer and physical intelligent electronic devices. The second is to analyze the vulnerabilities of the designed methodology for cybersecurity threats explicitly with the extension of IEC61850 to electric vehicle aggregators for communication with the master energy management. A man-in-the-middle attack conducted in the supervisory communication layer enabled us to investigate the effects of such an attack on the performance and operation of the smart electric grid.
2022
cyber-physical systems
cybersecurity
DERMS
GOOSE messages
hardware in the loop
IEC61850
intelligent electronic devices
MMS server
smart grid
fuzzy logic
File in questo prodotto:
File Dimensione Formato  
electronics-11-01861.pdf

accesso aperto

: Publisher’s version
Dimensione 8.61 MB
Formato Adobe PDF
8.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221168
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact