In this paper, we discuss the possibility of generating high-resolution mapping of urban (or extra-urban) environments by the application of synthetic aperture radar (SAR) processing concepts to the data collected by mm-wave automotive radars installed on-board commercial vehicles. The study is motivated by the fact that radar sensors are becoming an indispensable component of the equipment of modern vehicles, being characterized by low cost, good performance, and affordable processing; therefore, in the future, nearly every single vehicle could be potentially equipped with radar devices capable of high-resolution imaging, enabled by application of SAR processing methodologies. Throughout this paper, we aim to discuss the role of SAR imaging in the automotive context under a theoretical and experimental perspective. First, we present the resulting benefits in terms of angular resolution and signal-to-noise ratio. Then, we discuss relevant technological aspects, such as suppression of angular ambiguities, fine estimation of platform motion, and SAR processing architectures, and we present a preliminary evaluation of the required computational costs. Finally, we will present a number of experimental results based on open road campaign data acquired using an 8-channel MIMO radar at 77 GHz, considering the cases of side-looking SAR, forward SAR, and SAR imaging of moving targets.
Sensing the Urban Environment by Automotive SAR Imaging: Potentials and Challenges
Tebaldini, S;Manzoni, M;Tagliaferri, D;Rizzi, M;Monti-Guarnieri, AV;Prati, CM;Spagnolini, U;Nicoli, M;
2022-01-01
Abstract
In this paper, we discuss the possibility of generating high-resolution mapping of urban (or extra-urban) environments by the application of synthetic aperture radar (SAR) processing concepts to the data collected by mm-wave automotive radars installed on-board commercial vehicles. The study is motivated by the fact that radar sensors are becoming an indispensable component of the equipment of modern vehicles, being characterized by low cost, good performance, and affordable processing; therefore, in the future, nearly every single vehicle could be potentially equipped with radar devices capable of high-resolution imaging, enabled by application of SAR processing methodologies. Throughout this paper, we aim to discuss the role of SAR imaging in the automotive context under a theoretical and experimental perspective. First, we present the resulting benefits in terms of angular resolution and signal-to-noise ratio. Then, we discuss relevant technological aspects, such as suppression of angular ambiguities, fine estimation of platform motion, and SAR processing architectures, and we present a preliminary evaluation of the required computational costs. Finally, we will present a number of experimental results based on open road campaign data acquired using an 8-channel MIMO radar at 77 GHz, considering the cases of side-looking SAR, forward SAR, and SAR imaging of moving targets.File | Dimensione | Formato | |
---|---|---|---|
RV_2022_MDPI_RemoteSensing_Sensing the Urban Environment by Automotive SAR Imaging.pdf
accesso aperto
Descrizione: Full paper
:
Publisher’s version
Dimensione
928.74 kB
Formato
Adobe PDF
|
928.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.