The pandemic of COVID-19 has posed unprecedented threats to healthcare systems worldwide. Great efforts were spent to fight the emergency, with the widespread use of cutting-edge technologies, especially big data analytics and AI. In this context, the present study proposes a novel combination of geographical filtering and machine learning (ML) for the development and optimization of a COVID-19 early alert system based on Emergency Medical Services (EMS) data, for the anticipated identification of outbreaks with very high granularity, up to single municipalities. The model, implemented for the region of Lombardy, Italy, showed robust performance, with an overall 80% accuracy in identifying the active spread of the disease. The further post-processing of the output was implemented to classify the territory into five risk classes, resulting in effectively anticipating the demand for interventions by EMS. This model shows state-of-art potentiality for future applications in the early detection of the burden of the impact of COVID-19, or other similar epidemics, on the healthcare system.
Generating High-Granularity COVID-19 Territorial Early Alerts Using Emergency Medical Services and Machine Learning
Gianquintieri, L;Brovelli, MA;Caiani, EG
2022-01-01
Abstract
The pandemic of COVID-19 has posed unprecedented threats to healthcare systems worldwide. Great efforts were spent to fight the emergency, with the widespread use of cutting-edge technologies, especially big data analytics and AI. In this context, the present study proposes a novel combination of geographical filtering and machine learning (ML) for the development and optimization of a COVID-19 early alert system based on Emergency Medical Services (EMS) data, for the anticipated identification of outbreaks with very high granularity, up to single municipalities. The model, implemented for the region of Lombardy, Italy, showed robust performance, with an overall 80% accuracy in identifying the active spread of the disease. The further post-processing of the output was implemented to classify the territory into five risk classes, resulting in effectively anticipating the demand for interventions by EMS. This model shows state-of-art potentiality for future applications in the early detection of the burden of the impact of COVID-19, or other similar epidemics, on the healthcare system.File | Dimensione | Formato | |
---|---|---|---|
ijerph-19-09012.pdf
accesso aperto
:
Publisher’s version
Dimensione
3.09 MB
Formato
Adobe PDF
|
3.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.