An upper bound on the capacity of multiple-input multiple-output (MIMO) Gaussian fading channels is derived under peak amplitude constraints. The upper bound is obtained borrowing concepts from convex geometry and it extends to MIMO channels notable results from the geometric analysis on the capacity of scalar Gaussian channels. Relying on a sphere packing argument and on the renowned Steiner's formula, the proposed upper bound depends on the intrinsic volumes of the constraint region, i.e., functionals defining a measure of the geometric features of a convex body. The tightness of the bound is investigated at high signal-to-noise ratio (SNR) for any arbitrary convex amplitude constraint region, for any channel matrix realization, and any dimension of the MIMO system. In addition, two variants of the upper bound are proposed: one is useful to ensure the feasibility in the evaluation of the bound and the other to improve the bound's performance in the low SNR regime. Finally, the upper bound is specialized for two practical transmitter configurations, either employing a single power amplifier for all transmitting antennas or a power amplifier for each antenna.

A sphere packing bound for vector Gaussian fading channels under peak amplitude constraints

Favano, Antonino;Ferrari, Marco;Magarini, Maurizio;Barletta, Luca
2023-01-01

Abstract

An upper bound on the capacity of multiple-input multiple-output (MIMO) Gaussian fading channels is derived under peak amplitude constraints. The upper bound is obtained borrowing concepts from convex geometry and it extends to MIMO channels notable results from the geometric analysis on the capacity of scalar Gaussian channels. Relying on a sphere packing argument and on the renowned Steiner's formula, the proposed upper bound depends on the intrinsic volumes of the constraint region, i.e., functionals defining a measure of the geometric features of a convex body. The tightness of the bound is investigated at high signal-to-noise ratio (SNR) for any arbitrary convex amplitude constraint region, for any channel matrix realization, and any dimension of the MIMO system. In addition, two variants of the upper bound are proposed: one is useful to ensure the feasibility in the evaluation of the bound and the other to improve the bound's performance in the low SNR regime. Finally, the upper bound is specialized for two practical transmitter configurations, either employing a single power amplifier for all transmitting antennas or a power amplifier for each antenna.
2023
File in questo prodotto:
File Dimensione Formato  
A Sphere Packing Bound for Vector Gaussian Fading Channels under Peak Amplitude Constraints.pdf

accesso aperto

Descrizione: Articolo principale
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 758.35 kB
Formato Adobe PDF
758.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1220351
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact