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Abstract—An upper bound on the capacity of multiple-input
multiple-output (MIMO) Gaussian fading channels is derived
under peak amplitude constraints. The upper bound is obtained
borrowing concepts from convex geometry and it extends to
MIMO channels notable results from the geometric analysis on
the capacity of scalar Gaussian channels. Relying on a sphere
packing argument and on the renowned Steiner’s formula, the
proposed upper bound depends on the intrinsic volumes of
the constraint region, i.e., functionals defining a measure of
the geometric features of a convex body. The tightness of the
bound is investigated at high signal-to-noise ratio (SNR) for any
arbitrary convex amplitude constraint region, for any channel
matrix realization, and any dimension of the MIMO system.
In addition, two variants of the upper bound are proposed:
one is useful to ensure the feasibility in the evaluation of the
bound and the other to improve the bound’s performance in
the low SNR regime. Finally, the upper bound is specialized
for two practical transmitter configurations, either employing a
single power amplifier for all transmitting antennas or a power
amplifier for each antenna.

Index Terms—Fading channels, MIMO systems, peak am-
plitude constraint, capacity bounds, sphere packing, intrinsic
volumes.

I. INTRODUCTION

THE capacity of additive white Gaussian noise (AWGN)
channels subject to average power constraints is derived

by Shannon in [2] and it is perhaps the most renowned accom-
plishment in information theory. Its extension to multi-antenna
systems is another celebrated result and it is presented in [3]
by Telatar. Overall, Gaussian channels under average power
constraints have been studied extensively. On the other hand,
the capacity of AWGN channels under peak power or peak
amplitude constraints is still an ongoing research topic.

In the field of wireless communications, the information
capacity of amplitude-constrained channels is of great interest
for the following practical reasons. The ever-growing require-
ments in data rates and the ubiquitous presence of wireless
devices have made energy efficiency one of the fundamental
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features in the design of a wireless communication system.
In this regard, one of the main components affecting the
efficiency of the whole system is the power amplifier. Its
nonlinear characteristic imposes a limit on the peak power
of the signals it receives in input. To properly exploit the
available resources of a wireless channel, it is fundamental to
establish a realistic information theoretic framework, providing
an accurate estimate of attainable data rates. By imposing
peak power or peak amplitude constraints on the channel
input, one can accurately represent the limitations induced by
power amplifiers. Wireless communications encompass several
practical applications, ranging from microwave wireless to
free-space optical communications. For more details on the
latter, see [4]–[8]. In this work, we will mainly focus on the
channel capacity of microwave wireless systems, nevertheless
the extension of our results to the free-space optical scenario
is straightforward.

The first significant result in the evaluation of the chan-
nel capacity under peak amplitude constraints is presented
in [9] by Smith. He proves that the capacity-achieving dis-
tribution of an amplitude-constrained scalar Gaussian channel
is discrete and comprises a finite number of mass points.
Similar results on the discreteness of the capacity-achieving
distribution are derived in [10]–[13]. In [14], McKellips
presents a simple and tight upper bound on the ca-
pacity of scalar amplitude-constrained Gaussian channels.
The authors of [15] and [16] derive capacity bounds for
multiple-input multiple-output (MIMO) systems with identity
channel matrix and subject to a peak amplitude constraint
that limits the norm of the input vector. In [17] for the
same MIMO systems and constraint, we provide further in-
sights into the capacity-achieving input distribution and define
an iterative procedure to numerically evaluate an arbitrarily
accurate estimate of the channel capacity. As for systems
characterized by nonidentity channel matrices, the authors
of [18] investigate the capacity of 2 × 2 MIMO systems
for rectangular input constraint regions. Furthermore, in [19]
the capacity bounds are further generalized for n-dimensional
MIMO fading channels subject to any arbitrary peak amplitude
constraint. Finally, in [20] we refine the results presented
in [19] for two particular constraints of practical interest: One
employs a single amplifier for all transmitting antennas, which
determines a constraint on the norm of the input vector. We
refer to it as total amplitude (TA) constraint; the other trans-
mitter configuration employs multiple power amplifiers, one
per transmitting antenna. This configuration induces a peak
amplitude constraint on each entry of the input vector, which
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we define as per-antenna (PA) constraint. The configuration
employing multiple amplifiers is the most common in MIMO
systems, while that employing a single power amplifier is
crucial when power consumption is a critical feature [21], [22].

Contribution

In this paper, we provide an asymptotically tight upper
bound on the capacity of MIMO AWGN fading channels
subject to peak amplitude constraints that is based on a sphere
packing argument and that greatly improves upon the existing
literature. We derive the sphere packing (SP) upper bound by
extending the results in [23] to MIMO systems. We prove
that the gap between the derived upper bound and the best
lower bound from the literature [20], is asymptotically tight.
Indeed, as the signal-to-noise ratio (SNR) goes to infinity, the
gap between the bounds vanishes for any channel matrix, any
dimension of the MIMO system, and any convex constraint
region. Moreover, we introduce two variants of the SP upper
bound: One is useful to always guarantee a feasible evaluation
of the bound while preserving a vanishing capacity gap at
high SNR and the other is able to improve the performance at
low SNR. We also specialize the SP bound for two practical
transmitter configurations.

Structure of the Paper

In Section II, we introduce some useful mathematical tools
needed throughout the rest of the paper; in Section III we
define the system model; in Section IV we outline previous
results present in the current literature; and in Section V we
describe the SP upper bound and its variants. In Section VI,
we specialize the SP bound for the TA constraint and for the
PA constraint. Furthermore, we evaluate the tightness of the
resulting capacity bounds and compare it with the main results
from previous works. Section VII concludes the paper.

Notation

We use bold letters for vectors (x), uppercase letters for
random variables (X), calligraphic uppercase letters for sub-
sets of vector spaces (X ), and uppercase sans serif letters
for matrices (H). We denote by ∥x∥ the Euclidean norm of
the vector x, by HT the transposed of a matrix H, and by
det(H) its determinant. Furthermore, CN (µ,Σ) indicates a
complex multivariate Gaussian distribution with mean vector
µ and covariance matrix Σ. We represent the n× 1 vector of
zeros by 0n and the n × n identity matrix by In. We denote
by Bn ≜ {x : ∥x∥ ≤ 1} the n-dimensional unit ball in Rn

centered at 0n and by δBn ≜ {x : ∥x∥ ≤ δ} the n-dimensional
ball of radius δ centered in 0n. We define the n-dimensional
box of sides d as Boxn(d) ≜ {x : |xk| ≤ dk/2, k = 1, . . . , n}
and, with a slight abuse of notation, we use Boxn(d) whenever
dk = d, ∀k. Finally, we define HX ≜ {y : y = Hx, x ∈ X},
we denote the M-times Cartesian product of HX with itself
by [HX ]×M, and the n-dimensional volume of the set X by
Voln(X ).
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Figure 1. Example of rotation and projection of a cube K for the evaluation
of the intrinsic volume V2(K).

II. PRELIMINARIES

Given two subsets K and R of a vector space, the
Minkowski sum is denoted by the operator ⊕ and it gives
the set obtained by adding each vector in K to each vector
in R as

K ⊕R ≜ {k+ r | k ∈ K, r ∈ R}. (1)

Moreover, if K is a convex body in Rn, we denote by Vj(K)
its jth intrinsic volume, with j = 0, . . . , n. Intrinsic volumes
are nonnegative, homogeneous, and monotonic functionals and
represent a fundamental measure of content for a convex
body [24]. The authors of [24] also provide an intuitive, yet
technical, definition as follows. Let Pj be an n× n orthogo-
nal projection matrix, projecting onto a fixed j-dimensional
subspace of Rn. Furthermore, let Q be an n × n random
rotation matrix drawn uniformly from the Haar measure1 on
the compact, homogeneous group of n×n orthogonal matrices
with determinant one. Then, the intrinsic volumes of a convex
body K are defined as

Vj(K) ≜

(
n

j

)
κn

κjκn−j
E[Volj(PjQK)], j = 0, . . . , n, (2)

where the expectation is taken with respect to the random
rotation matrix Q and where κi ≜ π

i
2 /Γ

(
i
2 + 1

)
is the volume

of the i-dimensional unit ball. We remark that from (2), it is
straightforward to see that the nth intrinsic volume of K coin-
cides with its volume Voln(K). Some other special cases are
2Vn−1(K) being the surface area of K, 2V1(K)κn−1/(nκn)
being the mean width, and V0(K) = 1 being the Euler
characteristic [26]. Aside from a scaling factor, the jth intrinsic
volume Vj(K) is obtained by evaluating an expected value
on j-dimensional volumes. For example, consider K being a
cube. In Fig. 1, we show the effect of one random realization
of Q, as in (2) for V2(K). The matrix Q applies a random
rotation to the cube and the matrix P2 projects it onto a plane.
Therefore, the volume Vol2(P2QK) is the measure of the gray
area in Fig. 1. For further detail on intrinsic volumes see [24],
[26]–[28]. Intrinsic volumes are characterized by the following
property

Vj(AK) = AjVj(K), A ≥ 0, ∀j. (3)

1For a rigorous definition of the Haar measure, see [25].
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Given a set K such that K ⊃ R, it holds

Vj(K) ≥ Vj(R), ∀j. (4)

Thanks to Steiner’s formula [23, Theorem 4] we can evaluate
the n-dimensional volume of the Minkowski sum between a
convex set K and a ball of radius δ ≥ 0 as follows

Voln(K ⊕ δBn) =

n∑
j=0

Vj(K)Voln−j(δBn−j). (5)

Since the right-hand side of (5) is a convolution, it is useful to
introduce the (logarithmic) generating function of the intrinsic
volumes of K as [23, Theorem 8]

GK(t) = log

 n∑
j=0

Vj(K)ejt

. (6)

As shown in [24], an important property of these generating
functions is that, given two sets K and R, it holds

GK×R(t) = GK(t) +GR(t), ∀t ∈ R. (7)

Let us denote by T a topological vector space and by T ∗

the corresponding dual vector space, i.e., the set of all linear
forms on T . Given a function f : T → R ∪ {−∞,+∞},
by following [29] we define the convex conjugate of f as
f∗ : T ∗ → R ∪ {−∞,+∞} such that

f∗(t∗) ≜ sup
t∈T

{t · t∗ − f(t)}. (8)

III. CHANNEL MODEL

Let us consider an N × N complex MIMO channel with
input-output relationship given by

Ỹ = H̃ · X̃+ Z̃. (9)

The input vector X̃ is such that X̃ ∈ X̃ , with X̃ being a
convex constraint region, Z̃ ∼ CN (0N, 2σ2

z IN) is the additive
noise vector, and H̃ is any full rank channel fading matrix.
We assume H̃ to be constant throughout the channel uses
and known both at the transmitter and at the receiver. Let
us vectorize the system in (9) in its real and imaginary
components. We obtain the equivalent model

Y = H ·X+ Z, (10)

with H = Re{H̃}⊗I2+Im{H̃}⊗
[
0 −1
1 0

]
, where the operator ⊗

is the Kronecker product, Y is a 2N × 1 vector defined as
Y = [Re{Ỹ1}, Im{Ỹ1}, . . . ,Re{ỸN}, Im{ỸN}]T , and analo-
gously for X and Z.

We define the MIMO channel capacity as

C
(
X ,H, σ2

z

)
≜ sup

FX: supp(FX)⊆X
I(X ;Y) (11)

= sup
FX: supp(FX)⊆X

{h(Y)} − h(Z), (12)

where FX is the input distribution law and X is the equivalent
input constraint region derived from X̃ . Notice that we con-
sider a system with a number of transmitting antennas, NT ,
equal to the number of receiving antennas, NR. Nonetheless,
the authors of [5] show that any channel such that rank(H̃) ≤

NT ≤ NR can be transformed into an equivalent rank(H̃)×NT

MIMO channel. Therefore, when rank(H̃) = NT we can still
equivalently use the model in (9). On the other hand, when
rank(H̃) < NT , the model in (9) is not valid anymore and
therefore our results cannot be trivially extended to this case
(see [5] for further detail). Since we investigate the capacity
of amplitude-constrained channels, it is convenient to define
the SNR as the ratio between the peak power of the input
vector and the trace of the noise covariance matrix. Then,
the SNR depends on the specific constraint region X as
SNR ≜ (rmax(X ))2/(2Nσ2

z), with rmax(X ) ≜ supx∈X {∥x∥}.

IV. PREVIOUSLY PROPOSED BOUNDS

In [19], the authors provide capacity upper and lower
bounds for AWGN MIMO systems under an arbitrary peak
amplitude constraint region X and for any channel matrix,
known at both the transmitter and the receiver. Their duality
upper bounds are derived by considering an enlarged output
constraint region D ⊃ HX . Although there are some specific
constraints X for which one can still use a duality approach
directly tailored on HX , e.g. as in [5], this is not always
the case. Whenever tailored approaches are not viable, a
suboptimal but effective solution is to consider an enlarged
constraint region D designed to make the derivation of an
upper bound feasible. Specifically, in [19] they consider D to
be either a ball or a box. Let D1 be the (2N)-dimensional ball
of radius d1 = rmax(HX ) and D2 = Box2N(d2) the smallest
box containing HX . Then, in [19, Theorem 10] the authors
define their duality upper bounds as follows

C ≤ CD,1 ≜ log

(
c2N(d1) +

Vol2N(D1)

(2πeσ2
z)

N

)
, (13)

where c2N(d1) =
∑2N−1

j=0

(
2N−1

j

)Γ(N−j/2)
2j/2Γ(N)

(d1/σz)
j and

C ≤ CD,2 ≜
2N∑
j=1

log

(
1 +

d2,j√
2πeσ2

z

)
, (14)

where d2,j is the jth component of d2. The main disadvan-
tage of these bounds is that the more D differs from HX ,
the less accurate the bounds become. In [20], by extending
the McKellips-Type upper bound of [16] to MIMO systems
affected by fading, we improve the results of [19] for specific
cases of the PA constraint and for the TA constraints. Loosely
speaking, we achieve better results than those in [19] by con-
sidering an upper bound that depends on a smaller constraint
region S such that D ⊃ S ⊃ HX . Although, at high SNR, the
resulting asymptotic capacity gap in [20] is smaller compared
to the past literature, it can be far from zero. Moreover, the
capacity gap widens as N grows larger and the derived upper
bounds are valid just for the mentioned specific cases.

In the next section, we propose an upper bound that im-
proves upon those of [20] and that is also far more general.
Indeed, as for the duality upper bounds in [19], the proposed
bound can be applied to any convex constraint region. Further-
more, we prove that our upper bound provides an asymptotic
gap equal to zero for any convex constraint region, any channel
matrix H, and any MIMO dimension N.
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V. SPHERE PACKING UPPER BOUND

In [23], the authors investigate the capacity of AWGN
scalar channels under average and peak power constraints.
They provide an upper bound based on an SP argument
by using a fundamental result from convex geometry, i.e.,
the Steiner’s formula in (5). Given n → ∞ channel uses
and the corresponding n-dimensional constraint region K, the
authors of [23] define an upper bound that, roughly speaking,
is given by lim supn→∞

1
n log(Voln(K ⊕ δBn)/Voln(δBn)),

where δ =
√
nσ2

z and δBn is the noise ball. Intuitively, the
Minkowski sum K ⊕ δBn is obtained by taking the union of
an infinite number of noise balls δBn, after centering them at
each point of K. In this work, we extend their upper bound to
MIMO fading channels subject to peak amplitude constraints.
To do so, let us consider n = 2N·M. Then, we can reinterpret
the n channel uses as M uses of a (2N)-dimensional MIMO
channel. Since MIMO channel uses are independent, the
overall constraint region K is given by the M-fold Cartesian
product of the output signal space, i.e., K = [HX ]×M.

Theorem 1. By considering an arbitrarily large number, M,
of independent channel uses, for M → ∞, the SP bound is

C ≤ CSP ≜ ℓ(σ2
z)−N log

(
2πeσ2

z

)
, (15)

where ℓ(σ2
z) is

ℓ(σ2
z) = sup

θ∈[0,1]

{
− sup

t

{
2Nθt− log

( 2N∑
j=0

Vj(HX )ejt
)}

+ (1− θ)N log
2πeσ2

z

1− θ

}
. (16)

Proof. See Appendix A.

Remark 1. Since h(Z) = N log
(
2πeσ2

z

)
, by (15) and (12) it

holds that

sup
FX: supp(FX)⊆X

h(Y) ≤ ℓ(σ2
z). (17)

Let us now evaluate the asymptotic gap between the SP
bound CSP and the entropy power inequality (EPI) lower
bound, which is derived in [19] as

CEPI = N log

(
1 +

(Vol2N(HX ))
1
N

2πeσ2
z

)
. (18)

Proposition 1. The asymptotic capacity gap between the SP
upper bound and the EPI lower bound at high SNR is zero

gSP ≜ lim
σ2
z→0

CSP − CEPI = 0. (19)

Proof. See Appendix B.

Therefore, we have proved that the SP upper bound is
asymptotically tight at high SNR for any dimension N of
the MIMO system, any channel matrix H, and any convex
constraint region X .

A. Generalized Sphere Packing

A practical issue in the evaluation of the SP upper bound is
that it is not always trivial to derive the intrinsic volumes of
a given region. Furthermore, even when the intrinsic volumes
of X are known, the distortion induced by the channel matrix
H can anyway make the evaluation of the intrinsic volumes of
HX quite complicated, if not unfeasible. Therefore, in this
subsection we introduce a further upper bound on the SP
approach, which can always be evaluated as long as the (2N)th
intrinsic volume of HX , i.e., Vol(HX ), is known.

The core idea is somewhat reminiscent of the one used in the
upper bounds of [19]. To evaluate their duality upper bounds,
the authors of [19] replace HX with a region D ⊃ HX .
Roughly speaking, introducing the region D is similar to
replacing all the intrinsic volumes of HX with Vj(D) ≥
Vj(HX ). Instead, in our generalized sphere packing (G-SP)
approach, we are free to upper-bound each Vj(HX ) inde-
pendently. Aside from the derived improved flexibility, the
G-SP approach is especially useful because it allows us to
keep the (2N)th intrinsic volume of HX unaltered, which
lets us retain the desirable asymptotic properties of the SP
upper bound. We remark that V0(K) = 1 for any K and
that V2N(HX ) = det(H)Vol2N(X ) can be typically evaluated.
Instead, for the Vj(HX )’s, with j = 1, . . . , 2N − 1, we can
always define an upper bound by choosing, for each j, an
appropriate region Sj ⊃ HX , which by (4) guarantees that
Vj(Sj) ≥ Vj(HX ). Therefore, we have

Vj(HX ) ≤ Vj ≜


1, j = 0

Vj(Sj), j = 1, . . . , 2N− 1

det(H)Vol2N(X ), j = 2N.

(20)

Note that the choice of Sj depends on the considered HX .
Some practical choices of Sj for which intrinsic volumes can
be either derived or numerically evaluated are balls, boxes,
ellipsoids, or Cartesian products of these.

Lemma 1. By considering the upper bounds Vj on the
intrinsic volumes of HX and an arbitrarily large number, M,
of independent channel uses, for M → ∞, the G-SP upper
bound is

C ≤ CG-SP ≜ ℓG(σ
2
z)−N log

(
2πeσ2

z

)
, (21)

where ℓG(σ
2
z) is

ℓG(σ
2
z) ≜ sup

θ∈[0,1]

{
− sup

t

{
2Nθt− log

( 2N∑
j=0

Vje
jt

)}
+ (1− θ)N log

2πeσ2
z

1− θ

}
. (22)

Proof. The proof is almost identical to that of Theorem 1. The
only difference is that instead of the true intrinsic volumes,
we consider the upper bounds Vj’s defined in (20). Notice
that, since the logarithm is a monotonic function and the
intrinsic volumes in (74) are nonnegative coefficients in a
sum of exponentials, it holds ℓG(σ

2
z) ≥ ℓ(σ2

z) and therefore
C ≤ CSP ≤ CG-SP.
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Figure 2. Two sphere packing examples under a peak amplitude constraint
and different SNR values. For both cases, the red dashed line is the border of
K = B2, in dark gray the result of the Minkowski sum between K and the
noise ball for each specific SNR. On the left, the light gray noise balls are
translated replicas of δ1B2, while on the right of δ2B2 with δ1 > δ2.

Proposition 2. The asymptotic capacity gap between the G-SP
upper bound and the EPI lower bound at high SNR is zero

gG-SP ≜ lim
σ2
z→0

CG-SP − CEPI = 0. (23)

Proof. As σ2
z goes to zero we get the same result of (82) for

ℓG(σ
2
z) as well. Then, the G-SP upper bound asymptotically

depends uniquely on the (2N)th intrinsic volume, which
by (20) is still V2N(HX ) and therefore determines the same
vanishing gap of (19).

B. Piecewise Sphere Packing

Although the SP and G-SP upper bounds are asymptot-
ically tight, they can be loose at low SNR. Indeed, since
the SP bound is based on geometric arguments, its accuracy
depends on how precisely the Minkowski sum approximates
the true channel output region. As already mentioned, the
Minkowski sum in (46) is obtained by taking the union of
an infinite number of noise balls, centered at each point of
[HX ]×M. On the other hand, a rigorous application of the
sphere packing problem considers the union of nonoverlapping
replicas of δBn, packed in [HX ]×M⊕δBn. Roughly speaking,
the Minkowski sum provides an upper bound by allowing
the noise balls to overlap. Therefore, it is intuitive that, as
the noise balls get smaller, the Minkowski sum becomes a
better approximation of the output signal space [HX ]×M, as
shown in Fig. 2. At the same time, Fig. 2 also shows that
the Minkowski sum can be far from an ideal approximation
at low SNR. We now derive a family of piecewise sphere
packing (P-SP) upper bounds that is able to improve upon the
standard SP bound in (15) in the mentioned SNR range.

Lemma 2. Let us consider r ≜ rmax(X ) and the singular
value decomposition of H = UΛVT . Let us denote the diagonal
elements of Λ by λ1, . . . , λ2N and assume that λ1 ≥ λ2 ≥
· · · ≥ λ2N, since it is always possible to rearrange the MIMO
system in such a way that this condition is satisfied. Given
any combination of positive integers u and l with sum equal
to 2N and by considering an arbitrarily large number, M, of
independent channel uses, for M → ∞, the P-SP bound is

C ≤ CP-SP

≜ min
u:

u+l=2N

sup
α∈[0,1]

{ℓU (α) + ℓL(α)} −N log(2πeσ2
z),

(24)

where ℓU (α) is

ℓU (α) ≜ sup
θ∈[0,1]

{
− u sup

t

{
θt− 1

u
log

u∑
j=0

Vj(ΛUXU )e
jt

}
+ (1− θ)

u

2
log

2πeσ2
z

1− θ

}
, (25)

with ΛU being the u×u submatrix of Λ with diagonal elements
λ1, . . . , λu and XU = r

√
1− α2Bu. Moreover, ℓL(α) is

ℓL(α) ≜
l∑

k=1

1

2
log
(
2πe
(
λ2
u+kPk(α) + σ2

z

))
, (26)

where Pk(α) is the power allocation given by the water-filling
algorithm, for l parallel channels and a total power α2r2

allocated according to σ2
z/λ

2
u+1, . . . , σ

2
z/λ

2
2N.

Proof. See Appendix C.

Remark 2. When X is not a ball the asymptotic gap at high
SNR between the P-SP upper bound and the EPI lower bound
is larger than zero. On the other hand, if X is a ball we can
again claim that the asymptotic gap is zero. Indeed, notice
that whenever X is a ball and u = 2N, the P-SP becomes
equivalent to the SP upper bound, which we have shown
having an asymptotically vanishing gap in Proposition 1.

VI. CASE STUDIES

We now evaluate the performance of the SP upper bounds
subject to specific constraints, induced by common transmitter
configurations. Specifically, let us focus on two mentioned
cases of practical interest, namely the total amplitude (TA)
and the per-antenna (PA) constraints.

A. Total Amplitude Constraint

Let us evaluate the SP upper bound of Section V for the TA
input constraint region X = AB2N, with constraint amplitude
A ∈ R+. As shown in Theorem 1, to evaluate the bound CSP
we need to be able to compute the intrinsic volumes Vj(HX ),
for j = 0, . . . , 2N. As mentioned in Appendix C, when X
is a ball, by considering the singular value decomposition of
H = UΛVT , it holds

Vj(HX ) = Vj(ΛX ), ∀j. (27)

In [30], it is shown that given an ellipsoid

E =
{
x = [x1, . . . , x2N]

T ∈ R2N : xTΣ−1x ≤ 1
}
, (28)

by defining j independent and identically distributed random
vectors Q1, . . . ,Qj ∼ N (02N,Σ) and the random matrix Q =
[Q1, . . . ,Qj ], it is possible to compute the jth intrinsic volume
of E as

Vj(E) =
(2π)j/2

j!
E

[√
det(QT · Q)

]
. (29)

Let us set Σ = Λ2. Then, the intrinsic volumes for the TA
configuration are given by

Vj(HX )
(3)
= Vj(E)Aj , j = 0, . . . , 2N. (30)
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Figure 3. a) Numerical evaluation of the capacity gap gTA, defined in (31),
in bit per channel use (bpcu) versus SNR, for N = 2, . . . , 10. For each N,
the filled circles are the gaps resulting from each random channel realization,
while the solid lines show the averaged behavior. b) Standard deviation of
gTA in bpcu versus SNR, for N = 2, . . . , 10.

Given the intrinsic volumes in (30), we can use Theorem 1
to evaluate the SP upper bound for the TA constraint. Finally,
to improve the performance of the SP bound at low SNR, we
can apply the P-SP upper bound defined in Lemma 2.

Capacity Gap and Performance: To evaluate the gap we
consider the piecewise-EPI (P-EPI) lower bound proposed
in [20] and we denote it with CTA. Let us define the gap
as

gTA ≜ CTA − CTA, (31)

where CTA is given by the P-SP upper bound in Lemma 2,
applied to the TA constraint. We evaluate gTA numerically
by Monte Carlo simulation for N = 2, . . . , 10, over random
channel realizations. The entries of H̃ in (9) are drawn inde-
pendently as H̃i,j ∼ CN (0, 2), ∀i, j.

The results are presented in Figs. 3–5. In Fig. 3a, we show
a scatter plot of the gap realizations and with the solid lines
the average gap, both versus SNR and for each N = 2, . . . , 10.
In Fig. 3b, it is shown the standard deviation of gTA for each
N. As expected, when the SNR goes to zero the gap is small,
because (24) is optimized by u = 0 and CTA turns into the
Gaussian maximum entropy bound, which is tight at low SNR.
Moreover, the gap tends to decrease at high SNR. The gap
eventually goes to zero, as stated in Remark 2, thanks to
Proposition 1. Even in the worst case, gTA is approximately
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Figure 4. Numerical evaluation of the average capacity gap per complex
dimension in bit per channel use (bpcu) versus SNR, for N = 2, . . . , 10.
The solid lines are E[gTA]/N, with gTA defined in (31). The dashed lines are
E[gD,TA]/N, with gD,TA defined in (32).
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Figure 5. Numerical evaluation of the average ratio between the capacity
gap gTA, defined in (31), and the upper bound CTA, derived from (24). The
average ratio is plotted versus the SNR and for N = 2, . . . , 10.

3 bit per channel use (bpcu). In both Fig. 4 and Fig. 5 we
show that as N increases the performance of the upper bound
improves. In Fig. 4, it is reported the average gap per complex
dimension N in solid lines, while in Fig. 5 we show the
expected ratio between the bounding gap and the upper bound.
In Fig. 4, we also compare the gap of the proposed bound with
the one resulting from the duality upper bounds of [19] defined
in (13) and (14). Given CD,TA ≜ min

(
CD,1,CD,2

)
, the capacity

gap for the duality upper bounds is given by

gD,TA ≜ CD,TA − CTA. (32)

The dashed lines in Fig. 4 are the average gaps for complex
dimension E[gD,TA]/N, which are larger than E[gTA]/N for any
SNR level. Finally, in Fig. 6 we show the capacity bounds for
a random channel realization given N = 10. The figure shows
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Figure 6. Capacity bounds in bit per channel use (bpcu) versus SNR, for
N = 10 and for a random realization of the complex matrix H̃.

Re
(
X̃k

)

Im
(
X̃k

)

A

A

> A

Figure 7. Resulting constraint region for the complex input (circle) and for
the real and imaginary part of the signal, independently (square).

both how close our P-SP bound is to the lower bound and also
the substantial improvement compared to CD,1 and CD,2.

B. Per-Antenna Constraint

Let us now consider the PA constraint. The complex input
is such that X̃ ∈ X̃ = BoxN(2A), with A = (A1, . . . ,AN) ∈
RN

+ being the vector of amplitude constraints. Since we can
always consider an equivalent system by absorbing unequal
Ak’s in the channel matrix, we can assume Ak = A, ∀k
without loss of generality. Notice that constraining each entry
of the vectorized input vector does not induce the same
constraint as X̃ . Applying the constraint on the entries of
X, and therefore after the vectorization of (9) like in [19],
increases the capacity. Indeed, Fig. 7 shows that the constraint
on the real and imaginary parts of X̃k is weaker if compared
to
∣∣X̃k

∣∣ ≤ A, therefore it would induce a larger capacity.
We think that in the case of wireless communication systems,
where transmitted and received signals have a complex base-
band representation, applying the constraint on X̃, instead of
X, correctly interprets the technological limitations imposed
by power amplifiers. Notice that, on the other hand, free-space
optical communication systems typically deal with intensity
signals [4]–[8], then in that case the constraint would be
applied directly on a real-valued input. In this case study,

r1

r2

r3

p

Figure 8. Parallelepiped spanned by r1, r2, and r3 in p.
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Figure 9. a) Numerical evaluation of the capacity gap gPA, defined in (43),
in bit per channel use (bpcu) versus SNR, for N = 2, . . . , 10. For each N,
the filled circles are the gaps resulting from each random channel realization,
while the solid lines show the averaged behavior. b) Standard deviation of
gPA in bpcu versus SNR, for N = 2, . . . , 10.

we focus on wireless systems, therefore the equivalent N real
2-dimensional constraints induced by

∣∣X̃k

∣∣ ≤ A are[
Re
(
X̃k

)
, Im
(
X̃k

)]
∈ Xk = AB2, ∀k = 1, . . . ,N. (33)

We remark that, given the PA constraint, the set X is then
defined as the Cartesian product of N circles, X ≜ X1 ×
· · · × XN. Although it is fairly easy to evaluate the intrinsic
volumes Vj(X ), the channel matrix H can distort X in such
a way that HX is not anymore a Cartesian product. Because
of this distortion, even when the intrinsic volumes of X are
known, it is not trivial to evaluate those of HX . Therefore, the
only viable solution is to apply the G-SP bound by deriving
upper bounds on Vj(HX ).



ACCEPTED FOR PUBLICATION IN THE IEEE TRANSACTIONS ON INFORMATION THEORY 8

−50 −25 0 25 50
0

1

2

3

4
N

N

SNR (dB)

PA
:

A
ve

ra
ge

G
ap

pe
r

us
er

(b
pc

u)

Figure 10. Numerical evaluation of the average capacity gap per complex
dimension in bit per channel use (bpcu) versus SNR, for N = 2, . . . , 10.
The solid lines are E[gPA]/N, with gPA defined in (43). The dashed lines are
E[gD,PA]/N, with gD,PA defined in (45).
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Figure 11. Numerical evaluation of the average ratio between the capacity gap
gPA, defined in (43), and the upper bound CPA, defined in (44). The average
ratio is plotted versus the SNR and for N = 2, . . . , 10.

Let us substitute each Xk with a larger region Rk =
Box2(2A) ⊃ Xk, ∀k = 1, . . . ,N. Then we have

R = R1 × · · · × RN = Box2N(2A) ⊃ X . (34)

We now show that it is possible to evaluate an upper bound on
the intrinsic volumes Vj(HR) and therefore to derive a G-SP
bound for the PA constraint. Let P be a (2N)-dimensional
polytope and let Fj(P) denote the set of all j-dimensional
faces of P . From [27], the intrinsic volumes of a polytope are
defined as

Vj(P) =
∑

F∈Fj(P)

γ(F ,P)Volj(F), (35)

where γ(F ,P) is the normalized external angle2 of P at its
face F . Note that, since γ(F ,P) ≤ 1, we can upper-bound

2For a more rigorous definition of external angle, see [31].

−50 −25 0 25 50
0

50

100

150

200

250

SNR (dB)

C
ha

nn
el

C
ap

ac
ity

(b
pc

u)

CPA,1, derived from (21)
CPA,2, derived from (24)
CPA [20]
CD,1 (13)
CD,2 (14)

Figure 12. Capacity bounds in bit per channel use (bpcu) versus SNR, for
N = 10 and for a random realization of the complex matrix H̃.

and simplify (35) with

Vj(P) ≤
∑

F∈Fj(P)

Volj(F). (36)

Notice that R is a parallelepiped, therefore by using (36)
and results from exterior algebra, it is possible to evaluate
an upper bound on Vj(HR). The authors of [32] show how a
j-dimensional parallelepiped, with j ≤ 2N, can be identified
by a set of j vectors r1, . . . , rj ∈ R2N and by a base point
p ∈ R2N. Let p be one of the vertices of the parallelepiped
and let r1, . . . , rj have the same magnitude and direction of
the j edges originating from p. Then, the parallelepiped is
composed of all points in R2N resulting from

p + t1r1 + · · ·+ tjrj , 0 ≤ t1, . . . , tj ≤ 1. (37)

For instance, in Fig. 8 it is shown the three-dimensional
parallelepiped spanned by linear combinations of the vectors
r1, r2, and r3 given the base point p. Since volume is invariant
with respect to translations, we can drop the base point p and
represent the geometric region R via the corresponding matrix
R. Let us define it as

R ≜
[
r1 r2 . . . r2N

]
= 2A · I2N. (38)

To evaluate the jth intrinsic volumes Vj(R), with j ≤ 2N,
we need to compute the j-dimensional volumes of all the
faces spanned by all the possible combinations of j column
vectors in R, accounting for all possible repetitions. Let us
denote by Rj,i the j-dimensional face spanned by the ith
combination of j column vectors in R, out of

(
2N
j

)
. For

instance, let us consider Rj,1 to be the face spanned by the
rk’s with k = 1, . . . , j. Then, the corresponding 2N × j ma-
trix is Rj,1 =

[
r1 r2 . . . rj

]
. As shown in [32], the

j-dimensional volume of the face Rj,1 is given by

Volj(Rj,1) =
√∣∣det(RT

j,1 · Rj,1

)∣∣. (39)
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The same reasoning can be extended to any ith combination
and it can be applied analogously after the distortion intro-
duced by the channel matrix H. Let us define the region
S = HR ⊃ HX and the corresponding 2N × 2N matrix
S =

[
s1 s2 . . . s2N

]
= H · R. Let SA be the region

characterized by the same intrinsic volumes of S, but with
external angles always equal to 1. Then by (36), the jth
intrinsic volume of S can be upper-bounded by

Vj(S) ≤ Vj(SA) = 22N−j

(2Nj )∑
i=1

√∣∣det(STj,i · Sj,i)∣∣, (40)

where the term 22N−j accounts for how many times each
j-dimensional face is repeated in any parallelepiped. Since
Vj(HX ) ≤ Vj(S) ≤ Vj(SA), (40) provides us with all the
elements needed to apply the G-SP of Section V-A.

Another suitable upper bound on the intrinsic volumes
of HX can be derived by considering a region SB ≜
Hrmax(X )B2N = HA

√
NB2N ⊃ HX . Since SB is an ellip-

soid, its intrinsic volumes are easily derived as

Vj(SB) = Vj(E)
(
A
√
N
)j

, (41)

where Vj(E) is defined in (29), with Σ = Λ2 and H = UΛVT .
Since both SB and SA can provide valid upper bounds, we
choose the best option between (40) and (41) for each j, i.e.,

Vj =


1, j = 0,

min(Vj(SA),Vj(SB)), j = 1, . . . , 2N− 1,

det(H)Vol2N(X ), j = 2N.

(42)

Then, we can use the upper bound on the intrinsic volumes
of HX in (42) to evaluate the G-SP upper bound in Lemma 1
for the PA constraint, namely CPA,1. Notice that V2N is the
true (2N)th intrinsic volume and it is given by V2N =
det(H)Vol2N(X ) = det(H)πNA2N. Finally, by considering
rmax(X )B2N = A

√
NB2N ⊃ X , we can also evaluate the

P-SP bound in Lemma 2 for the PA constraint, which we will
denote by CPA,2.

Capacity Gap and Performance: Let us define the capacity
gap for the PA constraint as

gPA ≜ CPA − CPA, (43)

where CPA is the P-EPI lower bound for the PA constraint
from [20] and CPA is given by

CPA = min
(
CPA,1,CPA,2

)
. (44)

Fig. 9a shows a scatter plot of the gap realizations and, with
solid lines, the averaged behavior. Both are shown versus
the SNR, for N = 2, . . . , 10, and evaluated over random
channel matrix realizations. The entries of H̃ in (9) are drawn
independently as H̃i,j ∼ CN (0, 2), ∀i, j. In Fig. 9b, we show
the standard deviation of gPA for each N. Fig. 9a shows that,
like for the TA constraint, the gap is small for SNR going
to zero thanks to the P-SP approach and tends to decrease at
high SNR. As the SNR approaches infinity, the gap eventually
goes to zero thanks to the G-SP approach, see Proposition 2.
Notice that the capacity gap for the PA constraint, shown in
Fig. 9a, is larger than the one resulting from the TA constraint,

shown in Fig. 3a. This does not come as a surprise, it is simply
due to the infeasibility in the direct evaluation of the intrinsic
volumes of HX and the consequent necessity to upper-bound
them via the G-SP and P-SP approaches. Nevertheless, in
Fig. 11 we show that the average ratio between the gap gPA and
the upper bound CPA is within ≈ 0.1 after an SNR of 25 dB.
Furthermore, Fig. 10 and Fig. 12 clearly show the benefits that
the presented upper bounds provide if compared to the duality
upper bounds of [19]. Like for the TA constraint, the upper
bounds CD,1 and CD,2 are derived from [19, Theorem 10] and
defined in (13) and (14) respectively. We remark that (14)
requires the evaluation of the smallest box containing the
region HX , which is not always a trivial task. Therefore, as we
did for CPA,2, in the derivation of CD,2 for the PA constraint
we made the simplifying assumption of considering an input
constraint region rmax(X )B2N = A

√
NB2N ⊃ X . Then, we

define CD,PA ≜ min
(
CD,1,CD,2

)
and the capacity gap

gD,PA ≜ CD,PA − CPA. (45)

In Fig. 10, we show how the average gap per complex
dimension given by gPA is always smaller than that derived
from gD,PA. Finally, in Fig. 12 we show the capacity bounds
for a random channel realization, given N = 10. Like for the
TA constraint, it can be seen how the bound CPA improves
significantly upon the upper bounds CD,1 and CD,2 of [19].

VII. CONCLUSION

We derived an upper bound on the channel capacity of
multiple-input multiple-output (MIMO) systems affected by
fading and subject to peak amplitude constraints at the trans-
mitter. We also introduced two variants of the proposed upper
bound. One is used to always ensure a feasible evaluation
of the bound and the other improves the performance at
low signal-to-noise ratio (SNR). Moreover, we specialized
the upper bounds for two particular constraints induced by
practical transmitter configurations. The first configuration
considers a transmitter employing a single power amplifier
and determines a constraint on the norm of the input vector.
The other configuration utilizes multiple amplifiers, one per
transmitting antenna and it induces a constraint on the peak
amplitude of each entry of the input vector. We proved that,
for both configurations, the average capacity gap between the
upper bounds and the best available lower bound, tends to
vanish at high SNR. Moreover, we numerically showed that
the capacity gap is finite virtually at any SNR level and for any
of the considered MIMO dimensions. We also showed that the
presented bounds represent a substantial improvement com-
pared to the previously available upper bounds. Furthermore,
we proved that the presented upper bounds are asymptotically
tight at high SNR, not only for the considered constraints, but
also for any peak amplitude convex constraint, for any channel
matrix realization, and any dimension of the MIMO system.

APPENDIX A
PROOF OF THEOREM 1

By [23, Theorem 3], we have that

C ≤ lim sup
M→∞

1

M
log

Voln
(
[HX ]×M ⊕ δBn

)
Voln(δBn)

(46)
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= lim sup
M→∞

1

M
log Voln

(
[HX ]×M ⊕ δBn

)
− lim

M→∞

1

M
log Voln(δBn)

(47)

= lim sup
M→∞

1

M
log Voln

(
[HX ]×M ⊕ δBn

)
−N log

(
2πeσ2

z

)
,

(48)

where n = 2NM and δ =
√
nσ2

z . Let us focus on the
evaluation of the limit superior. To deal with the convolution
in (48) involving the output signal space K = [HX ]

×M,
we define the limiting normalized generating function of the
intrinsic volumes of K, f(t), as

f(t) ≜ lim
M→∞

1

2NM
GK(t) (49)

= lim
M→∞

1

2NM
G[HX ]×M(t) (50)

(7)
= lim

M→∞

M

2NM
GHX (t) (51)

=
1

2N
log

( 2N∑
j=0

Vj(HX )ejt
)
, (52)

where
(7)
= indicates that (51) holds thanks to (7). Note that since

HX is a finite set, the intrinsic volumes Vj(HX ) exist and are
finite, therefore the limit in (49) always exists. Thanks to (5),
we have that

Voln
(
[HX ]×M ⊕ δBn

)
=

n∑
j=0

Vj(K)Voln−j(δBn−j). (53)

As shown in [23], we can rewrite Steiner’s formula as follows.
Let us introduce the functions an(θ) and bn(θ) with support
θ ∈ [0, 1]. The function an(θ) is defined as the linear
interpolation of the values

an(j/n) =
1

n
log Vj(K), j = 0, . . . , n. (54)

Given an(θ), let us define the sequence of measures

Ṽn(θ) ≜ enan(θ), θ ∈ [0, 1]. (55)

The function bn(θ) is defined as

bn(θ) =
1

n
log

πn(1−θ)/2

Γ(n(1− θ)/2 + 1)
δn(1−θ), θ ∈ [0, 1]. (56)

Loosely speaking, the function an(θ) accounts for the intrinsic
volumes in (53), while bn(θ) accounts for Voln−j(δBn−j). Let
us define a function vn : [0, 1] → R as

vn(θ) ≜ an(θ) + bn(θ). (57)

Then, we can rewrite (53) as

Voln
(
[HX ]×M ⊕ δBn

)
=

n∑
j=0

envn(j/n). (58)

We now want to prove that vn converges for M → ∞. Notice
that if both an and bn converge, then also vn converges. Let
us start with an. Let f∗ be the convex conjugate of f in (49),

as defined in (8). By [23, Lemma 14], we have that given a
closed set I ⊆ R it holds the large deviations upper bound

lim sup
n→∞

1

n
log Ṽn(I) = lim sup

n→∞
an(I) ≤ − inf

t∈I
f∗(t), (59)

and given an open set F ⊆ R it holds the large deviations
lower bound

lim sup
n→∞

1

n
log Ṽn(F ) = lim sup

n→∞
an(F ) ≥ − inf

t∈F
f∗(t). (60)

Notice that these bounds require that the limit f(t) exists for
any t ∈ R and that f(0) < ∞. By (52), it is clear that, in our
case, these requirements are always satisfied. Thanks to the
concavity of an(·) for each n [23, Lemma 13], (59), and (60)
we have

lim
n→∞

an(θ) = −f∗(θ). (61)

For further detail, see the proof of [23, Lemma 15]. As for
bn, we also have

lim
n→∞

bn(θ) =
1− θ

2
log

2πeσ2
z

1− θ
. (62)

Finally, since vn is the sum of an and bn we have

v(θ) ≜ lim
n→∞

vn(θ) = −f∗(θ) +
1− θ

2
log

2πeσ2
z

1− θ
. (63)

Let us now define

θ̂n = arg max
θ∈[0,1]

vn(θ). (64)

Notice that by (58) and thanks to the monotonicity of the
logarithm, we can define the following upper and lower bounds

1

M
log
(
envn(θ̂n)

)
≤ 1

M
log Voln

(
[HX ]×M ⊕ δBn

)
(65a)

≤ 1

M
log
(
(n+ 1)envn(θ̂n)

)
. (65b)

By [23, Lemma 17] we have that

lim
n→∞

vn
(
θ̂n
)
= sup

θ∈[0,1]

v(θ). (66)

Therefore, by taking the limit for M → ∞ of (65) and by
noticing that

lim
M→∞

1

M
log
(
envn(θ̂n)

)
= lim

n
2N→∞

2Nvn
(
θ̂n
)

(67)

= 2N lim
n→∞

vn
(
θ̂n
)
, (68)

we have that

2N sup
θ∈[0,1]

v(θ) ≤ lim
M→∞

log Voln
(
[HX ]×M ⊕ δBn

)
M

(69a)

≤ 2N sup
θ∈[0,1]

v(θ). (69b)
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We now have all the necessary elements to evaluate the limit
superior in (48). For σ2

z > 0 it holds that

ℓ(σ2
z) ≜ lim sup

M→∞

1

M
log Voln

(
[HX ]×M ⊕ δBn

)
(70)

(69)
= sup

θ
2N · v(θ) (71)

(63)
= sup

θ

{
−2Nf∗(θ) + (1− θ)N log

2πeσ2
z

1− θ

}
(72)

(8)
= sup

θ

{
−2N sup

t
{θt− f(t)}+ (1− θ)N log

2πeσ2
z

1− θ

}
(73)

(52)
= sup

θ

{
− sup

t

{
2Nθt− log

(
2N∑
j=0

Vj(HX )ejt

)}

+ (1− θ)N log
2πeσ2

z

1− θ

}
, (74)

where θ ∈ [0, 1].

APPENDIX B
PROOF OF PROPOSITION 1

Let us define

θ∗(σ2
z) = argmax

θ
v(θ). (75)

By [23, Lemma 18], we have that3

lim sup
σ2
z→0

θ∗(σ2
z) = 1. (76)

Therefore it holds that

lim
σ2
z→0

ℓ(σ2
z)

= −2Nf∗(1)
(77)

= −2N sup
t

{
t− 1

2N
log

(
2N∑
j=0

Vj(HX )ejt

)}
(78)

= inf
t

{
log

(
2N∑
j=0

Vj(HX )e(j−2N)t

)}
(79)

= log

(
inf
t

{
2N∑
j=0

Vj(HX )e(j−2N)t

})
(80)

= log

(
inf
t

{
2N−1∑
j=0

Vj(HX )e(j−2N)t

}
+V2N(HX )

)
(81)

= log(Vol2N(HX )), (82)

where: i) (78) is a direct result of (8) and (52); ii) (80) holds
thanks to the monotonicity of the logarithm; iii) (81) holds
because, for j = 2N, V2N(HX ) can be taken out of the
infimum operation; iv) (82) holds because the argument of the
infimum in (81) is a sum of exponentials scaled by nonnegative

3Note that we use a different notation compared to [23]. Specifically, the
variable θ in [23] corresponds to 1− θ in our work.

coefficients, therefore the sum is minimized in t → ∞ and the
infimum is zero. The gap at high SNR results in

gSP = lim
σ2
z→0

CSP − CEPI (83)

= lim
σ2
z→0

ℓ(σ2
z)−N log

(
(Vol2N(HX ))

1
N

)
= 0. (84)

APPENDIX C
PROOF OF LEMMA 2

Let us separate the MIMO channel into two independent
subchannels. Then, we can apply the SP upper bound on one
subchannel and the Gaussian maximum entropy bound on the
other. Let us consider the singular value decomposition of H =
UΛVT and let us define Y′ = U−1Y, X′ = VTX, and Z′ =
U−1Z with Z′ ∼ N (02N, σ2

z I2N). An upper bound on the
supremum of the entropy in (12) is given by

sup
FX: X∈X

{h(Y)} = sup
FX: X∈X

{h(Y′)} (85)

= sup
FX: X∈X

{h(YU ,YL)} (86)

≤ sup
FX: X∈X

{h(YU ) + h(YL)}, (87)

where Y′ =
(
YU

YL

)
, with YU = [Y ′

1 , . . . , Y
′
u]

T ∈ Ru,
YL =

[
Y ′
u+1, . . . , Y

′
u+l

]T ∈ Rl, and u+l = 2N. Furthermore,
we have X′ =

(
XU

XL

)
, with XU and XL defined similarly to

YU and YL. We want to treat independently the contributions
of h(YU ) and h(YL), to upper-bound them with the two
mentioned techniques. First, note that it holds

Vj(HX ) = Vj(ΛX ), ∀j. (88)

Then, the subsystem to which YU belongs, perceives larger
singular values, and therefore higher SNR. On the other hand,
YL refers to the subsystem affected by a lower SNR due
to smaller singular values. Then, we expect the SP upper
bound to be more accurate on h(YU ), where the transmitted
signal is stronger compared to the noise level, while we expect
it to be less precise on h(YL). Since in the subsystem of
YL the Gaussian noise is dominant, a tighter upper bound
on h(YL) can be provided by the differential entropy of a
Gaussian-distributed vector YL ∼ N (0l,ΣL), with ΣL =
ΛLE

[
XLX

T
L

]
ΛL+σ2

z Il and with ΛL being the l× l submatrix
of Λ with diagonal elements λu+1, . . . , λ2N. Furthermore, to
separate the capacity contributions of the two subsystems, we
need to reformulate the input constraint in such a way that it
can be separated as well. Let us assume X to be a ball and
let us define its radius as r = rmax(X ). Then, we have

∥X∥2 = ∥XU∥2 + ∥XL∥2 ≤ r2. (89)

We reinterpret r2 as r2(1 − α2) + r2α2 with α ∈ [0, 1].
Therefore, the constraint ∥X∥ ≤ r becomes equivalent to⋃

α∈[0,1]

{
FX : ∥XU∥ ≤ r

√
1− α2, ∥XL∥ ≤ rα

}
. (90)
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By plugging this equivalent constraint into (87), we obtain

sup
FX: X∈X

{h(YU ) + h(YL)} (91)

= sup
α∈[0,1]

 sup

FX:

{
∥XU∥ ≤ r

√
1 − α2

∥XL∥ ≤ rα

{h(YU ) + h(YL)}


(92)

= sup
α∈[0,1]

{
sup

FXU
: ∥XU∥≤r

√
1−α2

{h(YU )}

+ sup
FXL

: ∥XL∥≤rα

{h(YL)}
}
.

(93)

Then, we can apply the SP upper bound in (17) on the
subsystem of YU to get

sup
FXU

: ∥XU∥≤r
√
1−α2

{h(YU )} ≤ ℓU (α). (94)

For the subsystem associated with YL, the upper bound is
given by

sup
FXL

: ∥XL∥≤rα

h(YL) (95)

≤ sup
FXL

: ∥XL∥≤rα

h
(
YL

)
(96)

(a)

≤ sup
E[∥XL∥2]≤r2α2

h
(
YL

)
(97)

(b)

≤ sup
E[∥XL∥2]≤r2α2

l∑
k=1

1

2
log
(
2πe
(
λ2
u+kE

[
|XL,k|2

]
+ σ2

z

))
(98)

=

l∑
k=1

1

2
log
(
2πe
(
λ2
u+kPk(α) + σ2

z

))
(99)

= ℓL(α), (100)

where in (a) we replaced ∥XL∥ ≤ rα with the looser
constraint E

[
∥XL∥2

]
≤ r2α2 and in (b) we used the fact that

h
(
YL

)
≤
∑

k h
(
Y L,k

)
, with Y L,k being the kth component

of the vector YL. Moreover, similarly to Y L,k, we denote by
XL,k the kth component of the vector XL and by Pk(α) the
power allocation given by the water-filling algorithm, which
maximizes (98) for the constraint E

[
∥XL∥2

]
≤ r2α2. Finally,

notice that even when X is not a ball we can simply consider
the enlarged constraint rmax(X )B2N ⊃ X instead of X and
still provide a valid upper bound.
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