Reconstructing a discrete object by means of X-rays along a finite set U of (discrete) directions represents one of the main task in discrete tomography. Indeed, it is an ill-posed inverse problem, since different structures exist having the same projections along all lines whose directions range in U. Characteristic of ambiguous reconstructions are special configurations, called switching components, whose understanding represents a main issue in discrete tomography, and an independent interesting geometric problem as well. The investigation of switching component usually bases on some kind of prior knowledge that is incorporated in the tomographic problem. In this paper, we focus on switching components under the constraint of convexity along the horizontal and the vertical directions imposed to the unknown object. Moving from their geometric characterization in windows and curls, we provide a numerical description, by encoding them as special sequences of integers. A detailed study of these sequences leads to the complete understanding of their combinatorial structure, and to a polynomial-time algorithm that explicitly reconstructs any of them from a pair of integers arbitrarily given.

Characterization of hv-Convex Sequences

Dulio P.;
2022-01-01

Abstract

Reconstructing a discrete object by means of X-rays along a finite set U of (discrete) directions represents one of the main task in discrete tomography. Indeed, it is an ill-posed inverse problem, since different structures exist having the same projections along all lines whose directions range in U. Characteristic of ambiguous reconstructions are special configurations, called switching components, whose understanding represents a main issue in discrete tomography, and an independent interesting geometric problem as well. The investigation of switching component usually bases on some kind of prior knowledge that is incorporated in the tomographic problem. In this paper, we focus on switching components under the constraint of convexity along the horizontal and the vertical directions imposed to the unknown object. Moving from their geometric characterization in windows and curls, we provide a numerical description, by encoding them as special sequences of integers. A detailed study of these sequences leads to the complete understanding of their combinatorial structure, and to a polynomial-time algorithm that explicitly reconstructs any of them from a pair of integers arbitrarily given.
2022
Curl
Discrete tomography
hv-convex set
polyomino
Projection
Switching-component
window
X-ray
File in questo prodotto:
File Dimensione Formato  
Characterization of hv-Convex Sequences.pdf

accesso aperto

: Publisher’s version
Dimensione 918.65 kB
Formato Adobe PDF
918.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1220341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact