Systems performing scientific computing, data analysis, and machine learning tasks have a growing demand for application-specific accelerators that can provide high computational performance while meeting strict size and power requirements. However, the algorithms and applications that need to be accelerated are evolving at a rate that is incompatible with manual design processes based on hardware description languages. Agile hardware design tools based on compiler techniques can help by quickly producing an application-specific integrated circuit (ASIC) accelerator starting from a high-level algorithmic description. We present the software-defined accelerator (SODA) synthesizer, a modular and open-source hardware compiler that provides automated end-to-end synthesis from high-level software frameworks to ASIC implementation, relying on multilevel representations to progressively lower and optimize the input code. Our approach does not require the application developer to write any register-transfer level code, and it is able to reach up to 364 giga floating point operations per second (GFLOPS)/W efficiency (32-bit precision) on typical convolutional neural network operators.

Bridging Python to Silicon: The SODA Toolchain

Curzel S.;
2022-01-01

Abstract

Systems performing scientific computing, data analysis, and machine learning tasks have a growing demand for application-specific accelerators that can provide high computational performance while meeting strict size and power requirements. However, the algorithms and applications that need to be accelerated are evolving at a rate that is incompatible with manual design processes based on hardware description languages. Agile hardware design tools based on compiler techniques can help by quickly producing an application-specific integrated circuit (ASIC) accelerator starting from a high-level algorithmic description. We present the software-defined accelerator (SODA) synthesizer, a modular and open-source hardware compiler that provides automated end-to-end synthesis from high-level software frameworks to ASIC implementation, relying on multilevel representations to progressively lower and optimize the input code. Our approach does not require the application developer to write any register-transfer level code, and it is able to reach up to 364 giga floating point operations per second (GFLOPS)/W efficiency (32-bit precision) on typical convolutional neural network operators.
2022
File in questo prodotto:
File Dimensione Formato  
Bridging_Python_to_Silicon_The_SODA_Toolchain.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri
11311-1220338_Curzel.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1220338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 4
social impact