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Systems performing scientific computing, data analysis, and machine learning
tasks have a growing demand for application-specific accelerators that can provide
high computational performance while meeting strict size and power requirements.
However, the algorithms and applications that need to be accelerated are evolving
at a rate that is incompatible with manual design processes based on hardware
description languages. Agile hardware design tools based on compiler techniques
can help by quickly producing an application-specific integrated circuit (ASIC)
accelerator starting from a high-level algorithmic description. We present the
software-defined accelerator (SODA) synthesizer, a modular and open-source
hardware compiler that provides automated end-to-end synthesis from high-level
software frameworks to ASIC implementation, relying on multilevel representations
to progressively lower and optimize the input code. Our approach does not require
the application developer to write any register-transfer level code, and it is able to
reach up to 364 giga floating point operations per second (GFLOPS)/W efficiency
(32-bit precision) on typical convolutional neural network operators.

Many applications, from environmental moni-
toring, to navigation and control, to scientific
experiments, require efficient processing of

a combination of data analysis, machine learning (ML),
and scientific computing algorithms. They need systems
that can effectively support each phase of the computa-
tion and adapt in real time to changes in the environ-
ment, under a variety of energy, performance, area, and
latency constraints. All these requirements combined
make general-purpose processors no longer a viable

solution and render application-specific accelerators a
necessity.

Typically, domain experts design and validate their
algorithms in high-level programming frameworks
(most of which are based on Python). Both algorithmic
methods and programming frameworks are evolving
quickly, especially in the data science and ML areas,
making it extremely difficult to design custom acceler-
ators able to support a wide variety of solutions. At
the same time, the conventional hardware design
cycle has significant productivity limitations. Manually
designing custom accelerators in hardware descrip-
tion languages (HDLs) is complex and time consum-
ing, preventing effective exploration of alternative
architectures and often requiring a new design cycle
each time new algorithms or models appear. General
and automated solutions are needed to quickly
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transition from the formulation of an algorithm to the
implementation of a dedicated accelerator.

More in detail, hardware designers usually extract
key computational patterns from the algorithms that
need to be accelerated, identify parallelism, and data
reuse opportunities, and design custom functional units
for specific kernels at the register-transfer level (RTL)
with an HDL. A common alternative to accelerate this
process is to implement the functional units in
C/C++ and convert them to HDL through high-level syn-
thesis (HLS) tools, such as Vitis HLS fromXilinx, Catapult
C from Siemens, or Stratus HLS from Cadence. In both
cases, after functional verification, the HDL kernels are
passed to downstream logic synthesis and physical
design tools, and finally integrated into a system. This
kind of design flow, with part manual coding and part
automated processing, is standard practice for design-
ing hardware. However, it still requires tremendous
effort, and the quality of the results highly depends on
the designers’ expertise. Moreover, the interactions
between multiple computer-aided design tools at differ-
ent levels of abstractions make the design process
tedious and error-prone, introducing significant verifica-
tion overheads, and forcing manual propagation of
changes across different stages of the design flow.

To address these issues, we developed the software-
defined accelerator (SODA) synthesizer, an open-source,
modular, and extensible hardware compiler for the gen-
eration of highly specialized accelerators from

algorithms designed in high-level programming frame-
works. The SODA synthesizer is composed of a compiler-
based frontend, to interfacewith high-level programming
frameworks and apply high-level optimizations, and a
compiler-based backend, to generate Verilog code
and interface with external tools that compile the final
design [either to application-specific integrated circuits
(ASICs)—or to field-programmable gate arrays (FPGAs)].

We used typical linear algebra and deep neural net-
work workloads to test the efficiency of the SODA syn-
thesizer, exploring its potential to generate the
optimized hardware designs with high performance.
Figure 1, for example, shows the SODA implementa-
tions of several different layers from the LeNet convo-
lutional neural network model, in the standard GDSII
format for ASIC manufacturing. SODA users can
quickly evaluate different design points until they
reach the desired solution for their performance or
area requirements by selecting different command-
line options. Such an exploration would require multi-
ple expensive redesigns with traditional HDL- or HLS-
based approaches, potentially never reaching the opti-
mal result due to limited design time available and
lack of integration between the different tools in the
flow. SODA, instead, provides a no-human-in-the-loop
end-to-end hardware compiler where no modifications
to the input code are needed, and its multilevel, modu-
lar, extensible design offers new opportunities for
exploring further analysis and optimization passes.

FIGURE 1. ASIC implementations of LeNet layers automatically generated by the SODA synthesizer: with a brief exploration of

available compiler options it is possible to reach the desired performance-area tradeoff.
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SODA FRAMEWORK
Figure 2(a) provides an overview of the SODA synthe-
sizer framework, which can be divided in two parts: a
compiler-based frontend and a compiler-based hard-
ware generation engine. The framework accepts input
descriptions from high-level Python frameworks, trans-
lated by the frontend into a high-level intermediate
representation (IR). The frontend exploits the multi-
level intermediate representation (MLIR)8 to perform
hardware/software partitioning of the algorithm speci-
fications and architecture-independent optimizations.
Subsequently, it generates a low-level IR (LLVM IR) for
the hardware generation engine, PandA-Bambu,4 a
state-of-the-art open-source HLS tool which, differ-
ently from most commercial alternatives, can also
accept LLVM IR as input. Optimizations at all levels of
the SODA toolchain are implemented as compiler
passes, significantly influencing the generated hard-
ware designs in terms of performance, area, and power.
An exhaustive exploration of the design space is made
possible by enabling and disabling compiler passes or
tuning their options.

SODA-OPT Frontend
SODA-OPT, shown in Figure 2(b), is the high-level
compiler frontend of the SODA synthesizer. Its role
is to perform search, outlining, optimization, dis-
patching, and acceleration passes on the input

program, preparing it for hardware synthesis target-
ing FPGAs or ASICs. To implement these function-
alities, SODA-OPT leverages and extends the MLIR
framework.

MLIR is a framework that allows building reus-
able, extensible, and modular compiler infrastruc-
ture by defining dialects, i.e., self-contained IRs that
respect MLIR’s meta-IR syntax. Dialects allow
modeling code at different levels of abstraction,
enabling the use of specialized representations to
facilitate specific compiler optimizations. We refer
to dialects that are maintained in tree, along with
the MLIR framework, as built-in dialects. These
include abstractions for linear algebra, polyhedral
analysis, structured control flow, and others. Several
high-level programming frameworks for various
domains, such as ML (TensorFlow, ONNX-MLIR,
TORCH-MLIR), scientific computing (NPCOMP), and
general-purpose languages (e.g., the FLANG front-
end for Fortran) started leveraging MLIR to imple-
ment their own specific dialects, optimizations
passes, and lowering methods to translate their pro-
grams into built-in MLIR dialects. Built-in dialects
are entry points to the SODA synthesizer, enabling
high-level frameworks to leverage our toolchain.

SODA-OPT introduces the soda dialect to partition
input applications into an orchestrating host program
and custom hardware accelerators. SODA-OPT analy-
sis and transformation passes ingest MLIR inputs

FIGURE 2. SODA synthesizer is an open-source, multilevel, modular, extensible, no-human-in-the-loop hardware compiler com-

posed of a high-level compilation framework, and a lower level hardware generator exploiting advanced HLS techniques.

(a) Overview of SODA synthesizer. (b) Compiler frontend. (c) High-level synthesis backend.
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from high-level frameworks, identify key code regions,
and outline them into separate MLIR modules. Code
regions that are selected for hardware acceleration
undergo an optimization pipeline with progressive low-
erings through different MLIR dialects (linalg ! affine

! scf ! cf ! llvm), until they are finally translated into
an LLVM IR purposely restructured for hardware syn-
thesis. Instead, the host module is lowered into an
LLVM IR file that includes runtime calls to control the
generated custom accelerators.

Table 1 summarizes the high-level optimization
passes in the SODA-OPT pipeline, and their benefits
for the hardware synthesis process. Traditional HLS
design flows expect manual code modifications that
restructure the original algorithm (to create internal
buffers or apply profitable tiling strategies) or tool-spe-
cific pragma annotations (to guide unrolling or provide
alias information). Instead, SODA-OPT exploits dedi-
cated and context-specific MLIR dialects to apply sys-
tematic high-level transformations. These can expose
instruction- and data-level parallelism, perform loop
transformations, and apply various other steps, such
as buffer hoisting or accumulation on temporary varia-
bles. SODA-OPT leverages the linalg dialect to identify
operations and separate hardware and software parti-
tions, then it optimizes loops through the affine dia-
lect, and finally performs CSE, DCE, and scalar
replacement of aggregates (SRoA) optimizations
through the cf, arith, and memref dialects. The optimiza-
tion pipeline is not monolithic: developers can easily

enable, disable, reuse, or tune SODA-OPT passes, pro-
viding ample opportunities to enhance them for spe-
cific domains and implement automated exploration
strategies.

THE SODA SYNTHESIZERMULTILEVEL
APPROACH AIMS AT EXPLOITING
DIFFERENT ABSTRACTIONS FOR
DIFFERENT TRANSFORMATIONS.

The SODA synthesizer multilevel approach aims
at exploiting different abstractions for different
transformations. In the current implementation,
there are optimization techniques that can be
applied both in the frontend and in the backend:
this is often the case for basic compiler passes,
such as DCE, which are available both in SODA-
OPT and in Bambu. Should the two levels interfere
with each other in a disruptive way, we would cur-
rently intervene and control backend passes on a
case-by-case basis.

While the focus of this article is the generation of
hardware accelerators, SODA-OPT can be extended to
apply optimizations also on the host code generation
path: for example, to enable parallel execution of differ-
ent accelerators, to better use the central processing

TABLE 1. Summary of high-level optimizations in SODA-OPT. Parts of them are existing MLIR passes, while others are custom,

HLS-oriented implementations.

Optimization Benefit for HLS Passes

Single basic block containing
the compute intensive part of
the kernel

More freedom to schedule operations Tiling, unrolling

Increased instruction-level
parallelism

Schedule independent arithmetic operations on the
same cycle when their inputs are available

Unrolling

Increased data level parallelism Schedule operations into different memory units on
the same cycle

Tiling, unrolling, temporary
buffer allocation

Avoid unnecessary reads from
kernel arguments

Reduce expensive accesses to external memory Temporary buffer allocation,
allocation buffer promotion

Reuse read results, aggregate
on scalars

Save scalar values loaded from memory and
intermediate results in registers rather than
performing repeated memory accesses

Scalar replacement of
aggregates (SRoA)

Early alias analysis Schedule memory operations independently on
regions that do not alias

Early alias analysis (noalias),
outlining pass

Remove redundant or
unnecessary operations

Avoid wasting resources Common subexpression
elimination (CSE), dead code
elimination (DCE)
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unit (CPU) cache hierarchy, and to automatically reuse
accelerators when possible.

SODA Synthesizer Backend
The SODA synthesizer backend (Bambu), shown in
Figure 2(c), leverages state-of-the-art HLS techniques
to generate accelerator designs starting from the low-
level LLVM IR produced by the SODA frontend. Bambu
has several frontends based on standard compilers
(GCC or CLANG), it builds an internal IR to perform
HLS steps (including bitwidth analysis, loop optimiza-
tions, resource allocation, scheduling, and binding
algorithms), and finally generates the designs in an
HDL (Verilog or VHDL). Alongside synthesizable HDL,
it can also automatically produce testbenches for veri-
fication. Bambu enables the SODA synthesizer to tar-
get FPGAs (from Xilinx, Altera, Lattice, NanoXplore)
and ASICs. For ASICs, SODA supports Verilog-to-GDSII
generation with both commercial (synopsis design
compiler) and open-source (OpenROAD flow) logic
synthesis tools.

Bambu is optimized to support a wide set of C and
C++ constructs, but it can also ingest LLVM IR through
its internal Clang frontend; through SODA-OPT, we
connect Bambu with MLIR code. The LLVM IR gener-
ated after SODA-OPT performed high-level optimiza-
tions is explicitly restructured for HLS, resulting in
more efficient accelerators when compared to an input
obtained through direct MLIR to LLVM IR translation
(as will be shown in the experimental evaluation).

Bambu generates designs at the RTL following the
finite state machine with datapath (FSMD) model; the
generated accelerators can subsequently be integrated
in larger system-level designs, with or withoutmicrocon-
trollers driving the execution. Bambu also exposes mod-
ular synthesis methodologies10: differently from other
HLS tools, it can generate modules representing func-
tions that may be reused or replicated across an entire
design and composed in a complex multiaccelerator
systembefore generating the RTL code.

We have extended Bambu with new HLS methodolo-
gies that can integrate FSMDmodules as processing ele-
ments in coarse-grained dataflow designs,1 and in high-
throughput, dynamically scheduled, multithreaded paral-
lel templates.9 MLIR descriptions are naturally parallel
and hierarchical, so it will be possible to instantiate such
architectural templates from SODA-OPT. Rather than
requiring manual annotations on the input code, we can
define the design hierarchy at a higher level of abstrac-
tion by exploitingMLIR abstractions,which allow to auto-
matically identify independent operations (linalg) and
create task-parallel regions (affine) in the input code.

Each region can subsequently be optimized through the
SODA-OPT pipeline described in the “SODA-OPT Front-
end” section.

SODA Resource Library and Verification
The resource library is a crucial component for any
hardware synthesis toolchain: it contains RTL descrip-
tions of functional units implementing the operations
present in the IR (adders, subtractors, multipliers,
etc.), with different versions for different data types.
The HLS tool then combines functional units together
to build the design. To effectively drive the synthesis
algorithms, these functional units also need a charac-
terization in terms of performance (e.g., latency of the
critical path) and area for each target technology or
device. Area and performance estimates, together
with related models that describe the area and latency
of the interconnections among resources, directly
affect many optimization passes and synthesis algo-
rithms: for example, they help decide whether func-
tional units can be chained together by removing
intermediate registers, if their combined latency does
not exceed the required clock period.

The SODA backend can interface with commercial
and open-source logic synthesis tools. We introduced
support for the OpenROAD flow and the FreePDK (for-
merly Nangate) 45-nm cell technology library, provid-
ing a completely open-source, end-to-end compiler-
based hardware generation flow from high-level pro-
gramming environments to silicon. We have also
added support for the Synopsys Design Compiler, tar-
geting either the FreePDK 45 nm or the Global Foun-
dries 12-/14-nm technology node. To achieve this, we
have extended the characterization process of the
functional units in Bambu: we performed logic synthe-
sis of functional units with FreePDK, collecting all the
relevant area and performance metrics to build the
resource library and model estimates.

The characterization is also relevant for the imple-
mentation of floating point units. While Bambu can
integrate hand designed functional units and external
intellectual property libraries (e.g., for FPGAs we select
FloPoCo13), for the ASIC target in SODA we choose to
generate floating point units starting from the standard
C soft float library (math.h); this allows to easily support
different data types (FP32 and FP64), and full IEEE754
compliance if required. The characterization improves
the quality of the generated floating point units: for
example, the FP32 multiplier has an overall latency of
four cycles at 200MHz and five cycles at 500MHz.

Finally, a key component in an end-to-end agile
and automated design flow is verification, which
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assures that the generated designs are functionally
correct. Bambu includes a suite of tools that enable
automatic testbench generation and validation of
results, supporting external open-source and commer-
cial simulators; in the SODA toolchain, we choose to
leverage Verilator.14 We provide Bambu with a set of
input values for the synthesized kernel (for example,
input arguments of a function) in an XML file. Then,
Bambu generates Verilog testbenches and scripts to
drive the execution of Verilator. After HLS, Bambu
launches the simulation and verifies that the output
values from the Verilog kernel correspond to the
golden results from the execution of the input code.

EXPERIMENTAL EVALUATION
In this section, we present results of our end-to-end
hardware generation flow. We first demonstrate the
effectiveness of the SODA-OPT high-level optimiza-
tion pipeline on a set of representative linear algebra
benchmarks, and then evaluate the entire toolchain
by generating custom ASIC accelerators for classic
deep neural network models.

The SODA synthesizer enables the generation of
custom accelerators for any algorithm that can be
described in MLIR. The linear algebra and ML kernels
that we considered in this evaluation could also be
executed on traditional templated accelerators (i.e.,
dot-product, matrix–vector, matrix–matrix engines),
and our HLS-based approach could instead be used to
generate accelerators for less common computational

patterns. Nevertheless, we employ these kernels to
demonstrate the effectiveness of our high-level opti-
mization flow because they are broadly used in high-
level scientific computing frameworks.

THE SODA SYNTHESIZER ENABLES
THE GENERATION OF CUSTOM
ACCELERATORS FOR ANY
ALGORITHM THAT CAN BE
DESCRIBED INMLIR.

In all following experiments, execution times are
obtained through simulation using randomly gener-
ated test vectors. Area and power results are obtained
after OpenROAD place-and-route. Baseline designs
(noopt) are synthesized from MLIR code without high-
level optimizations. All designs (baseline or optimized)
are synthesized with Bambu -O2 optimizations.

Linear Algebra Kernels
Table 2 demonstrates the impact of the SODA-OPT
optimization pipeline, applied to feed an optimized
and restructured low-level IR to the HLS tool for RTL
generation. In these experiments, we generate ASIC
accelerators for 14 linear algebra kernels from Poly-
Bench15 translated from C to MLIR affine, representing
common computations performed within scientific

TABLE 2. Execution time (in clock cycles) for polybench kernels with ASIC target—FreePDK 45 nm @ 500 MHz. Speedup shown

in parentheses.

Opt. strategy No MLIR Opts. SODA-OPT Pipeline

Kernel size 2 4 8 16 2 4 8 16

three_mm 388 3,087 25,010 211,298 47 (8.3x) 82 (37.6x) 656 (38.1x) 5,248 (40.3x)

two_mm 315 2,475 20,258 167,490 52 (6.1x) 86 (28.8x) 688 (29.4x) 5,504 (30.4x)

gemm 186 1,446 11,922 95,376 31 (6.0x) 56 (25.8x) 448 (26.6x) 3,584 (26.6x)

doitgen 277 4,282 67,666 999,698 29 (9.6x) 258 (16.6x) 2,064 (32.8x) 16,512 (60.5x)

bicg 129 518 2,058 8,482 26 (5.0x) 43 (12.0x) 85 (24.2x) 340 (24.9x)

mvt 130 514 2,051 8,195 26 (5.0x) 45 (11.4x) 89 (23.0x) 356 (23.0x)

gemver 283 1,118 4,393 17,617 77 (3.7x) 106 (10.5x) 424 (10.4x) 1,696 (10.4x)

gesummv 162 578 2,178 8,722 39 (4.2x) 56 (10.3x) 105 (20.7x) 420 (20.8x)

atax 132 523 2,067 8,227 44 (3.0x) 73 (7.2x) 292 (7.1x) 1,168 (7.0x)

syr2k 186 1,310 9,018 68,986 38 (4.9x) 567 (2.3x) 3,033 (3.0x) 24,264 (2.8x)

syrk 142 990 6,714 49,250 31 (4.6x) 453 (2.2x) 2,581 (2.6x) 20,648 (2.4x)

trmm 46 532 4,402 34,018 24 (1.9x) 532 (1.0x) 4,402 (1.0x) 34,018 (1.0x)
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computing and ML high-level programming frame-
works. We simulate each kernel in isolation, without
system-level considerations, to focus on the effects of
the optimization pipeline. Kernel Size refers to the size
of all the dimensions of input and output tensors.

We compare the performance of accelerators
generated by simply lowering the benchmarks to
LLVM IR (No High Level Opts.) against the perfor-
mance of accelerators generated after performing
the SODA-OPT optimizations listed in Table 1
(SODA-OPT Pipeline). In particular, we apply full
unrolling on the three innermost nested loops,
apply all buffer-related transformations, mark func-
tion arguments as not aliasing, apply CSE, DCE,
and SRoA. Providing an optimized and restructured
LLVM IR to Bambu results in more performant
designs: accelerators generated from the optimized
IRs exhibit an average speedup of 18x, with peaks
of 60x, over the baseline. Three kernels exhibit only
a small performance improvement (syr2k and syrk
improve between 2x and 3x, while trmm does not
improve). The reason is that these kernels include
inner-loop bounds, which depend on the induction
variables of the outer loops, and the SRoA pass
could not perform scalar replacement. This can be
solved in the future by introducing an additional
optimization pass to simplify index calculations
when the loop bounds are known.

Neural Network Models
We used the SODA synthesizer to automatically gen-
erate accelerators for relevant operators of the LeNet,
MobilneNetV2, ResNet-18, and ResNet-50 convolu-
tional neural network models. These models were
trained with TensorFlow in 32-bit floating point preci-
sion, converted into protobuf files, and translated into
built-in MLIR abstractions (tosa and linalg). No modifi-
cations to the original high-level models were
required. By default, SODA-OPT selects and partitions
the input model to create one accelerator for each
DNN layer. For the sake of conciseness, and because
the same computation patterns are repeated multiple
times in the network, we selected a subset of layers
for our experiments. We outlined them into isolated
kernels, applied selected high-level optimizations or
the complete SODA-OPT pipeline, and generated Veri-
log targeting ASIC technologies. We report execution
time, area, power, and efficiency (expressed as FLOPS
per Watt) for each experiment. Although the total
end-to-end synthesis time from high-level description
to GDSII varies depending on the specific kernel, all
designs required less than three hours of processing

on a node with two AMD EPYC 7282 16-Core CPUs
and 256 GB of DDR4 3.2-GHz memory.

LeNet
In the top part of Table 3, we present runtime, area and
power metrics of LeNet accelerators that cover 98% of
its execution time (45-nm technology). Each line in the
table corresponds to a single accelerator. We previ-
ously showed the final floorplans of these accelerators
in the top part of Figure 1. We applied a subset of the
available MLIR optimizations at the linear algebra and
affine abstractions, observing speedups up to 6.2x and
an efficiency between 2.68 and 41.75 giga floating point
operations per second (GFLOPS)/W.

MobileNetV2
Table 3 also shows results for relevant MobileNetV2
depth-wise convolution (DWC2D) layers, representing
35% of MobileNetV2 inference time. The simplest opti-
mization (leveraging high-level abstractions to propa-
gate alias information automatically) already results in
speedups of around 2� and designs reaching an effi-
ciency over 1 GFLOPS/W. All the selected MobileNet
layers have the same structure (varying only tensor
dimensions and loop bounds), and thus benefit in the
same way from the applied optimization, i.e., allowing
Bambu to schedule memory operations on different
arguments in parallel because the input arguments do
not alias.

Reusable accelerators
Optimizing entire convolution operations in LeNet and
MobileNetV2 does not allow performance increases
higher than 2.1�. Instead, applying an appropriate tiling
strategy to balance the size of the design considering
both operations and memory parallelism allows to sig-
nificantly improve performance. We tile a convolution
operation and outline the tile, so that the generated
accelerator is invoked multiple times to run a convolu-
tional layer. We also ensure that the same tile can
be reused across different layers in deeper networks
(35, 14, and 46 convolutional layers in MobileNetV2,
ResNet-18, and ResNet-50, respectively). Table 4 shows
results for the generated accelerators with and without
applying the SODA-OPT optimization pipeline, which
provides up to 15.2� speedup with respect to the unop-
timized baseline and efficiency between 103 and 364
GFLOPS/W in the 12-/14-nm technology. If we compare
the results of the tile approach with what can be
achieved by outlining a full convolution, we obtain, for
example, that executing the fastest version of the LeNet
CONV_04 layer is 14.89� slower than executing 44,800
times the optimized LeNet tile in Table 4 (assuming two
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cycles latency for load and one cycle for store opera-
tions froma private scratchpadmemorywith twoports).

Overall, our experimental evaluation demonstrates
the effectiveness of an end-to-end modular silicon

compiler. The SODA synthesizer allows generating,
optimizing, and exploring hardware designs without
requiring to write any RTL code. Optimizations imple-
mented at different abstraction levels across the

TABLE 3. LeNet and MobileNetV2 results—FreePDK 45 nm @500 MHz. Gray rows show baseline kernels.

Model Kernel MLIR
Opts.

Cycles Area
(um⌃2)

Power
(W)

Runtime
(s)

GFLOPS GFLOPS/
W

Speedup

LeNet CONV_01 noopt 10,262,618 29,073 0.01380 20.53E-03 0.061 4.43 Baseline

LeNet CONV_01 noalias 4,627,982 124,255 0.05060 9.26E-03 0.135 2.68 2.22

LeNet BIAS_02 noopt 251,694 10,395 0.00434 503.39E-06 0.049 11.48 Baseline

LeNet BIAS_02 noalias
+unroll

40,826 60,048 0.03410 81.65E-06 0.307 9.01 6.17

LeNet RELU_03 noopt 151,342 7,385 0.00399 302.68E-06 0.165 41.55 Baseline

LeNet RELU_03 noalias
+unroll

38,446 35,695 0.01700 76.89E-06 0.652 38.39 3.94

LeNet CONV_04 noopt 85,380,948 36,814 0.01770 170.76E-03 0.058 3.32 Baseline

LeNet CONV_04 noalias 83,380,180 37,556 0.01800 166.76E-03 0.060 3.34 1.02

LeNet BIAS_05 noopt 62,932 10,409 0.00453 125.86E-06 0.049 11.00 Baseline

LeNet BIAS_05 noalias
+unroll

10,222 60,007 0.03650 20.44E-06 0.306 8.41 6.16

LeNet RELU_06 noopt 37,844 7,464 0.00397 75.69E-06 0.165 41.75 Baseline

LeNet RELU_06 noalias
+unroll

9,620 35,950 0.01760 19.24E-06 0.651 37.04 3.93

MobileNetV2 DWC2D_01 noopt 87,319,010 39,106 0.01800 174.64E-03 0.062 3.45 Baseline

MobileNetV2 DWC2D_01 noalias 43,966,946 62,676 0.02570 87.93E-03 0.123 4.80 1.99

MobileNetV2 DWC2D_02 noopt 65,482,874 38,108 0.01790 130.97E-03 0.015 0.87 Baseline

MobileNetV2 DWC2D_02 noalias 32,968,826 61,767 0.02500 65.94E-03 0.030 1.23 1.99

MobileNetV2 DWC2D_05 noopt 32,740,654 38,142 0.01720 65.48E-03 0.062 3.61 Baseline

MobileNetV2 DWC2D_05 noalias 16,483,630 61,684 0.02510 32.97E-03 0.123 4.91 1.99

TABLE 4. CONV2D kernel results @500 MHz. White rows show baseline kernels.

Operation and kernel information Runtime information Synthesis results for FreePDK
45 nm

Synthesis results for GF 12
nm

Target
model

Dimensions MLIR
Opt.

Cycles Runtime
(s)

GFLOPS Avg.
speedup

Area
(umum22)

Power
(W)

GFLOPS/
W

Area
(umum22)

power
(w)

gflops/
w

LeNet 1,1,14,8,1,1,1 No
Opt.

1,809 3.62E-06 0.061 Baseline 38,375 0.01760 3.52 8,470 0.00017 364.19

LeNet 1,1,14,8,1,1,1 SODA-
OPT

125 250.00E-
09

0.896 15.25 673,558 0.27400 3.27 169,635 0.00689 130.04

MobileNetV2 1,7,7,4,1,1,1 No
Opt.

3,194 6.39E-06 0.061 Baseline 26,811 0.01050 5.84 6,257 0.00059 103.31

MobileNetV2 1,7,7,4,1,1,1 SODA-
OPT

225 450.00E-
09

0.871 14.20 752,356 0.38200 2.28 190,354 0.00523 166.56

ResNet18,50 1,1,1,64,1,1,1 No
Opt.

963 1.93E-06 0.066 Baseline 15,994 0.00533 12.47 3,794 0.00038 176.75

ResNet18,50 1,1,1,64,1,1,1 SODA-
OPT

99 198.00E-
09

0.646 9.73 413,867 0.20200 3.20 105,053 0.00455 142.08
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modular compiler-based toolchain allow iterative
improvements of the generated accelerators, with
high-quality results in terms of performance and
efficiency.

RELATEDWORK
Several works have explored generation of customhard-
ware accelerators starting from high-level programming
frameworks, focusing in particular on Python and ML.
They typically resort to one of two approaches: either
1) compile andmap functions to parameterizedmodules
or architectures; or 2) convert code to imperative lan-
guages (C/C++) for HLS, often heavily annotated to
workwith specific commercial tools.

Approach 1) consists of solutions like VeriGOOD-ML,3

whichmapsMLmodels described in theONNX format to
three substantially different architecture templates for
different types of neural networks through the PolyMath
compiler. GEMMINI5 provides a parameterized systolic
array generator in Chisel that connects to a RISC-V core;
the GEMMINI toolchain then offloads operations from
specific layers of ONNX models to the systolic array.
TVM’s VTA architecture11 is a specialized coprocessor for
matrix multiplication, generated through HLS for FPGA;
the TVM high-level framework can compile ML models
into a stream of instructions for VTA. Additional ongoing
work on TVM proposes to compile specific deep neural
network operators into ASIC leveraging parameterized
RTL templates. All these solutions aim at automatically
generating ASIC designs, but they remain limited as they
only support layers and kernels that have a direct map-
ping to one of the provided hardware templates. The
SODAsynthesizer, instead, leverages high-level and lower
level (HLS) compiler-based tools. Hence, it provides a
more general framework able to generate ASIC designs
for virtually any computational pattern, as long as a low-
ering to MLIR is available. Such automatically generated
accelerators lead to less flexible designs with respect to
dedicated parameterized templates, but they canprovide
higher performance and efficiency. To the best of our
knowledge, our design flow is the first one to provide a
completely automated path from generic high-level code
to fully customASIC accelerators.

Solutions that implement approach 2) include PyLog,6

which defines a high-level compilation infrastructure for
Python programs and generates annotated C/C++ code
that is then fed to Xilinx Vivado HLS for generation of the
accelerators. HeteroCL7 partitions code between gen-
eral-purpose processor and FPGA, providing a library of
functions to insert hardware-specific information in the
source code, which is then used to generate annotated
C/C++ for HLS tools. ScaleHLS12 is a tool that facilitates

HLS through high-level optimizations implemented in
MLIR, potentially allowing to synthesize accelerators
starting from high-level programming environments that
lower to an MLIR representation; however, it also resorts
to writing back annotated C code for Vivado HLS. While
all these tools bridge high-level programming frameworks
with hardware generators, they have limited flexibility, as
they define compilation pipelines that only support spe-
cific high-level frameworks and backend HLS tools. More-
over, after applying hardware-related optimizations, they
all generate code at a different (higher) level of abstrac-
tion, potentially losing a considerable amount of semantic
information in the process.

Finally, the Circuit IRs Compiler and Tools (CIRCT)
incubator project2 uses MLIR to build a set of interop-
erable tools for hardware design. The project focuses
on creating relevant circuit-level IR abstractions for
RTL generation. Once matured, CIRCT dialects could
be merged into the MLIR framework, potentially
becoming a building block for hardware compilers.

CONCLUSION
This article presents the SODA synthesizer, a modular,
multilevel, end-to-end compiler-based design automa-
tion tool that enables the generation of custom accel-
erators starting from high-level software programming
frameworks. The framework is composed of interoper-
ating open-source technologies: SODA-OPT (https://
gitlab.pnnl.gov/sodalite/soda-opt), an extensible high-
level frontend and optimizer based on the MLIR frame-
work, and PandA-Bambu HLS (https://panda.dei.
polimi.it), a lower level hardware generator. The tool-
chain can interface with the OpenROAD Flow (https://
theopenroadproject.org) to provide a fully open-
source path to ASIC generation.

We have shown the effectiveness of compiler-
based optimizations on linear algebra kernels and deep
neural network models, discussed the impact of the
optimizations on the final ASIC designs, and demon-
strated how our toolchain allows generating efficient
hardware designs without requiring developers to write
any RTL code. The SODA toolchain dramatically short-
ens the hardware design cycle from algorithmic formu-
lation to hardware implementation, considers system-
level implications, and enables rapid design space
exploration and agile hardware development.
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