Novel "converged" applications combine phases of scientific simulation with data analysis and machine learning. Each computational phase can benefit from specialized accelerators. However, algorithms evolve so quickly that mapping them on existing accelerators is suboptimal or even impossible. This paper presents the SODA (Software Defined Accelerators) framework, a modular, multi-level, open-source, no-human-in-the-loop, hardware synthesizer that enables end-to-end generation of specialized accelerators. SODA is composed of SODA-Opt, a high-level frontend developed in MLIR that interfaces with domain-specific programming frameworks and allows performing system level design, and Bambu, a state-of-the-art high-level synthesis engine that can target different device technologies. The framework implements design space exploration as compiler optimization passes. We show how the modular, yet tight, integration of the high-level optimizer and lower-level HLS tools enables the generation of accelerators optimized for the computational patterns of converged applications. We then discuss some of the research opportunities that such a framework allows, including system-level design, profile driven optimization, and supporting new optimization metrics.
The SODA approach: leveraging high-level synthesis for hardware/software co-design and hardware specialization: invited
Curzel, Serena;Ferrandi, Fabrizio
2022-01-01
Abstract
Novel "converged" applications combine phases of scientific simulation with data analysis and machine learning. Each computational phase can benefit from specialized accelerators. However, algorithms evolve so quickly that mapping them on existing accelerators is suboptimal or even impossible. This paper presents the SODA (Software Defined Accelerators) framework, a modular, multi-level, open-source, no-human-in-the-loop, hardware synthesizer that enables end-to-end generation of specialized accelerators. SODA is composed of SODA-Opt, a high-level frontend developed in MLIR that interfaces with domain-specific programming frameworks and allows performing system level design, and Bambu, a state-of-the-art high-level synthesis engine that can target different device technologies. The framework implements design space exploration as compiler optimization passes. We show how the modular, yet tight, integration of the high-level optimizer and lower-level HLS tools enables the generation of accelerators optimized for the computational patterns of converged applications. We then discuss some of the research opportunities that such a framework allows, including system-level design, profile driven optimization, and supporting new optimization metrics.File | Dimensione | Formato | |
---|---|---|---|
3489517.3530628.pdf
accesso aperto
:
Publisher’s version
Dimensione
434.6 kB
Formato
Adobe PDF
|
434.6 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.