
Invited: The SODA Approach: Leveraging High-Level Synthesis
for Hardware/Software Co-design and Hardware Specialization

Nicolas Bohm Agostini∗

Serena Curzel†

Ankur Limaye, Vinay Amatya, Marco Minutoli,
Vito Giovanni Castellana, Joseph Manzano,

Antonino Tumeo
Pacific Northwest National Laboratory

Richland, WA, USA

Fabrizio Ferrandi
Politecnico di Milano

Milano, Italy

ABSTRACT

Novel "converged" applications combine phases of scientific sim-

ulation with data analysis and machine learning. Each computa-

tional phase can benefit from specialized accelerators. However,

algorithms evolve so quickly that mapping them on existing ac-

celerators is suboptimal or even impossible. This paper presents

the SODA (Software Defined Accelerators) framework, a modular,

multi-level, open-source, no-human-in-the-loop, hardware synthe-

sizer that enables end-to-end generation of specialized accelerators.

SODA is composed of SODA-Opt, a high-level frontend developed

in MLIR that interfaces with domain-specific programming frame-

works and allows performing system level design, and Bambu, a

state-of-the-art high-level synthesis engine that can target different

device technologies. The framework implements design space explo-

ration as compiler optimization passes. We show how the modular,

yet tight, integration of the high-level optimizer and lower-level

HLS tools enables the generation of accelerators optimized for the

computational patterns of converged applications. We then dis-

cuss some of the research opportunities that such a framework

allows, including system-level design, profile driven optimization,

and supporting new optimization metrics.

CCS CONCEPTS

• Hardware→ High-level and register-transfer level synthe-

sis.

KEYWORDS

High-level synthesis, hardware/software co-design

ACM Reference Format:

Nicolas BohmAgostini, Serena Curzel, Ankur Limaye, Vinay Amatya, Marco

Minutoli,, Vito Giovanni Castellana, Joseph Manzano, Antonino Tumeo,

and Fabrizio Ferrandi. 2022. Invited: The SODA Approach: Leveraging High-

Level Synthesis for Hardware/Software Co-design and Hardware Special-

ization. In Proceedings of the 59th ACM/IEEE Design Automation Conference

∗Also with Northeastern University.
†Also with Politecnico di Milano.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

DAC ’22, July 10–14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530628

(DAC) (DAC ’22), July 10–14, 2022, San Francisco, CA, USA. ACM, New York,

NY, USA, 4 pages. https://doi.org/10.1145/3489517.3530628

1 INTRODUCTION

Emerging scientific applications, including network (power grid,

communication, transportation, etc) analysis, environmental mon-

itoring, high energy physics, materials synthesis, and in general

autonomous control of experimental workflows, require efficient

processing of a combination of data analysis, machine learning

(ML), and scientific computing algorithms. They need systems that

can effectively support each phase of the computation and adapt

in real-time to changes in the environment or the system under

analysis, considering different, and often contrasting, energy, per-

formance, area, and latency constraints. Systems able to meet all

these requirements need specialized accelerators.

Domain scientists design and validate their algorithms in high-

level programming frameworks, most of which are based on Python.

Both algorithmic methods and programming frameworks are evolv-

ing quickly, especially in the data science area, making it extremely

difficult to design specialized accelerators that are efficient with new

methods. In fact, the conventional hardware design cycle presents

significant productivity limitations. Manually designing custom

accelerators in hardware description languages (HDLs) is complex

and time consuming, often requiring an entire new design cycle

each time new algorithms or models appear and preventing a wide

exploration of alternative architectures. General and automated

solutions are needed to quickly transition from the formulation of

an algorithm to the implementation of a dedicated accelerator.

The typical process requires hardware designers to distill key

computational patterns from the algorithms that need to be acceler-

ated, identify parallelism and data reuse opportunities, and design

custom functional units for specific kernels at the register-transfer

level (RTL) with an HDL. A common alternative is to implement

the functional units in C/C++ and convert them to HDL through

commercial High-Level Synthesis (HLS) tools (Vitis HLS, Catapult

C or Stratus HLS). In both cases, after functional verification, the

HDL kernels are passed to downstream logic synthesis and phys-

ical design tools, and finally integrated into a system. This kind

of design flow, with part manual coding and part automated pro-

cessing, is standard practice for designing hardware. However, it

still requires tremendous effort, and the quality highly depends

on the designers’ expertise. Moreover, the interactions between

multiple Computer-Aided Design (CAD) tools at different levels

1359

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Bohm Agostini, N., Curzel, S., et al.

Translate to MLIR IR

Backend:
HLS

Frontend:
SODA-OPT

Synthesizer

Design Space
Exploration

Templates

Components

FPGA or ASIC Targets

Constraints

Resource Library

Metrics

High-Level
Framework ML Model

Chip Design

DSL

Evaluation

Executablee

Processor

LLVM Tools

(a)

MLIR: Linalg and Affine Dialects

Search & Outline kernel functions

Isolate Kernel & Host Code

MLIR and SODA Dialects

Analysis &
high-level

optimization

Convert SODA
Operations to

Runtime

Low-Level IR Low-Level IR

MLIR Kernel
Code

MLIR Host
Code

Frontend: SODA-OPT

From: High-Level Framework

To: Backend To: LLVM Tools

Translate to LLVM IR

(b)

Analysis & low-level optimization

Template
based

synthesis

Allocation

Scheduling

Binding

Modules (RTL IR)

System (RTL IR)

Verilog and Testbench

Backend: HLS

From: Frontend

To: Chip Design

(c)

Figure 1: The SODA framework is an open-source, multi-level, modular, extensible, hardware generator composed of a high-level

compiler and a lower-level HLS backend

of abstractions make the design process tedious and error-prone,

introducing significant verification overheads and forcing manual

propagation of changes across different stages of the design flow.

To address these issues, we introduce the SODA (Software De-

fined Accelerators) Synthesizer, an open-source, modular, and ex-

tensible end-to-end hardware compiler for the generation of highly

specialized accelerators from algorithms designed in high-level pro-

gramming frameworks. SODA is composed of a compiler-based

frontend, to interface with high-level programming frameworks

and apply high-level optimizations, and a compiler-based backend,

to generate Verilog code and interface with external tools that com-

pile the final design (either application-specific integrated circuits -

ASICs - or field programmable gate arrays - FPGAs). The frontend,

SODA-OPT1, is implemented with the MLIR compiler infrastructure,

while the backend leverages a state-of-the-art HLS tool, Bambu [3],

from the Panda framework2. Differently from other frameworks

that use HLS, the interaction between frontend and backend hap-

pens through specialized compiler intermediate representations

(IRs) and their progressive lowerings. Such a modular, yet tight,

integration, allows performing optimizations at the right level of

abstractions, and pursuing new research opportunities by adding

new compiler representations and passes.

2 THE SODA FRAMEWORK

Figure 1a provides an overview of the SODA framework, which

can be divided in two parts: the frontend and the hardware gen-

eration engine. The framework accepts input descriptions from

high-level Python frameworks, translated by the frontend into a

high-level intermediate representation (IR). The frontend exploits

the Multi-Level Intermediate Representation (MLIR) [5] to perform

hardware/software partitioning of the algorithm specifications and

1SODA-OPT is available at: https://gitlab.pnnl.gov/sodalite/soda-opt
2Bambu is available at: https://panda.dei.polimi.it

architecture-independent optimizations. Subsequently, it generates

a low-level IR (LLVM IR) for the HLS engine, PandA-Bambu [3],

a state-of-the-art open-source tool which, differently from most

commercial alternatives, can also accept LLVM IR as input. Opti-

mizations at all levels of the SODA toolchain are implemented as

compiler passes, significantly influencing the generated hardware

designs in terms of performance, area, and power. An exhaustive

exploration of the design space is made possible by enabling and

disabling compiler passes or tuning their options.

2.1 SODA-OPT Frontend

SODA-OPT (Figure 1b) is the high-level compiler frontend of the

SODA framework. It performs search, outlining, optimization, dis-

patching, and acceleration passes on the input program, preparing

it for hardware synthesis targeting FPGAs or ASICs. SODA-OPT

leverages and extends the MLIR framework.

MLIR is a framework that allows building reusable, extensi-

ble, and modular compiler infrastructure by defining dialects, i.e.,

self-contained IRs that respect MLIR’s meta-IR syntax. Dialects

allow modeling code at different levels of abstraction, enabling

the use of specialized representations to facilitate compiler opti-

mizations. We refer to dialects that are maintained in tree, along

with the MLIR framework, as built-in dialects. These include ab-

stractions for linear algebra, polyhedral analysis, structured control

flow, and others. Several high-level programming frameworks for

various domains such as machine learning (TensorFlow, ONNX-

MLIR, TORCH-MLIR), scientific computing (NPCOMP), and general

purpose languages (e.g., the FLANG frontend for Fortran) started

leveraging MLIR to implement their own specific dialects, optimiza-

tions passes, and lowering methods to translate their programs

into built-in MLIR dialects. Built-in dialects are entry points to the

SODA Synthesizer, enabling high-level programming frameworks

to integrate with our toolchain.

1360

The SODA Approach DAC ’22, July 10–14, 2022, San Francisco, CA, USA

SODA-OPT introduces a custom dialect to partition input appli-

cations into an orchestrating host program and custom hardware

accelerators. SODA-OPT passes ingest MLIR inputs from high-level

frameworks, identify key code regions, and outline them into sep-

arate MLIR modules. Code regions that are selected for hardware

acceleration undergo an optimization pipeline with progressive

lowerings through different MLIR dialects (linalg→ affine→
scf → cf → llvm), until they are translated into an LLVM IR

restructured for hardware synthesis. Instead, the host module is

lowered into an LLVM IR file that includes runtime calls to control

the generated custom accelerators.

SODA-OPT performs the following high-level optimizations at

the affine or lower dialects: tiling, unrolling, temporary buffer al-
location, alloca buffer promotion, scalar replacement of aggregates

(SRoA), early alias analysis, common sub-expression elimination

(CSE), and dead code elimination (DCE). When properly scheduled

and combined together, these optimizations provide the following

benefits for the HLS backend: easier operation scheduling, increase

of instruction-level and data-level parallelism, reduction of the num-

ber of accesses to external memory, favoring reuse of previously

read values (storing them in registers), aggregation on local regis-

ters instead of external memory accesses, concurrent scheduling of

independent memory operations on arrays, removal of redundant

or unnecessary operations improving resource utilization.

Traditional HLS design flows expect manual code modifications

that restructure the original algorithm (to create internal buffers

or apply profitable tiling strategies) or tool-specific pragma anno-

tations (to guide unrolling or provide alias information). Instead,

SODA-OPT exploits dedicated and context-specific MLIR dialects

to apply systematic high-level transformations. These can expose

instruction- and data-level parallelism, perform loop transforma-

tions, and apply various other steps such as buffer hoisting or accu-

mulation on temporary variables. SODA-OPT leverages the linalg
dialect to identify operations and separate hardware and software

partitions, then it optimizes loops through the affine dialect, and
finally performs CSE, DCE, and SRoA optimizations through the

cf, arith, and memref dialects.

2.2 SODA Synthesizer Backend

The SODA framework backend, shown in Figure 1c, is Bambu, a

state-of-the-art HLS tool that generate the accelerators designs start-

ing from the low-level LLVM IR produced by SODA-OPT. Bambu has

several frontends based on standard compilers (GCC or CLANG), it

builds an internal IR to performHLS steps (including bitwidth analy-

sis, loop optimizations, resource allocation, scheduling, and binding

algorithms), and generates the designs in a hardware description

language (Verilog or VHDL). Alongside synthesizable HDL, it can

also automatically produce testbenches for verification. Bambu

enables SODA to target FPGAs (from Xilinx, Altera, Lattice, NanoX-

plore) and ASICs. For ASICs, SODA supports Verilog-to-GDSII

generation with both commercial (Synopsis Design Compiler) and

open-source (OpenROAD flow) logic synthesis tools.

Bambu is optimized to support a wide set of C and C++ con-

structs, but it can also ingest LLVM IR through its internal Clang

frontend; through SODA-OPT, we connect Bambu with MLIR code.

The LLVM IR generated after SODA-OPT high-level optimizations is

restructured for HLS, resulting in more efficient accelerators with

respect to inputs directly translated from MLIR to LLVM IR.

Bambu generates designs at the register transfer level (RTL) fol-

lowing the finite state machine with datapath (FSMD) model; the

accelerators can subsequently be integrated in larger system-level

designs, with or without microcontrollers driving the execution.

Bambu also exposes modular synthesis methodologies [8]: differ-

ently from other HLS tools, it can generate modules representing

functions that may be reused or replicated across an entire design

and composed in a complex multi-accelerator system.

We have extended Bambu with new HLS methodologies that can

integrate FSMD modules as processing elements in coarse-grained

dataflow designs [1], and in high-throughput, dynamically sched-

uled, multithreaded parallel templates [7]. MLIR descriptions are

naturally parallel and hierarchical, making possible to instantiate

such architectural templates from SODA-OPT. Rather than requiring

manual annotations on the input code, we can define the design

hierarchy at a higher level of abstraction by exploiting MLIR

3 EVALUATION

We demonstrate the SODA approach by outlining and optimizing

kernels and generating their hardware implementation.

(a) Without Bambu opts. (b) With Bambu opts.

Figure 2: Relative difference between execution times of Mat-

mul kernels with different MLIR and Bambu optimizations.

Benefits of high-level optimizations - High-level optimiza-

tions performed at the MLIR level have a direct impact on the final

performance of the generated RTL code, by enabling further opti-

mization opportunities within the HLS backend. For example, task

level parallelism information exposes instruction and data level

parallelism, which HLS can exploit for better operation scheduling.

As an example, we synthesize matrix multiplication kernels kernels

with different input sizes, while allowing SODA-OPT to apply several

high-level optimizations: permuting loop iterations, unrolling inner-

most loops, and allocating a temporary buffer on which to perform

accumulations. Figure 2a compares the execution latency of the op-

timized variants against the non-optimized variant (Normal). The

solid line in bold represents the iso-performance line. Points under

this line represent faster execution than the non-optimized baseline.

1361

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Bohm Agostini, N., Curzel, S., et al.

Figure 2b shows the average contribution of Bambu optimizations

(18% clock cycles reduction) to the high-level optimizations. Points

under the dashed line represent designs with lower execution de-

lays than without any high-level optimization. In these designs,

the selected high-level optimizations expose code structures that

facilitate Bambu HLS process.

Neural Network case study - To demonstrate SODA end-to-

end capabilities, we automatically translate a LeNetmodel trained in

TensorFlow to the linalg dialect and employ SODA-OPT to search,

outline, and optimize different regions of the network, then gener-

ating different specialized accelerators with Bambu.

Figure 3 shows the SODA implementations of several different

layers from the LeNet convolutional neural network model, in the

standard GDSII format for ASIC manufacturing. Exploring available

compiler options enables us to reach higher performance at the

cost of increased area utilization.

Figure 3: ASIC implementations of LeNet layers.

4 RESEARCH OPPORTUNITIES

A modular compiler infrastructure provides several new research

opportunities. SODA-OPT can already reason about the system level

design, performing code partitioning, optimizations specific for the

generation of custom hardware generation, and the composition of

a system architecture by generating glue code for control processors

or assembling accelerators in dynamically scheduled architectures.

Such an approach could be further extended by integrating with

rapid prototyping platforms in the open-source hardware ecosys-

tem, such as the Embedded Scalable Platforms (ESP) [6]. Specifically,

Bambu could provide an open-source synthesis backend for cus-

tom accelerators to ESP, while SODA-OPT could drive the system

design, leveraging the rich set of services offered by ESP to invoke

the accelerators. From a more general point view, SODA-OPT could

easily support other types of specialized accelerators beside general

purpose processors and HLS generated accelerators. A multi-level

retargetable compiler framework provides opportunities to cou-

ple static with dynamic analysis, enabling to capture information

on data-dependent patterns (typically involving memory accesses)

through automated instrumentation and profiling that could then

be feed back to the hardware generation engine to facilitate the

exploration of the memory hierarchy and overall architecture de-

sign [9]. As presented in [2], the modularity of the framework even

allows supporting novel computing paradigms, such as spiking

neural networks. We have designed a new MLIR dialect able to

deal with spiking neural networks, and the framework easily al-

lows mapping spiking neurons on digital equivalents that can be

synthesized through Bambu (enhancing what is currently done by

hand with other FPGA platforms and conventional HLS tools). This

approach could be further extended to support other aspects for

the generation of custom circuits. For example, in the context of

security, there already are initiatives to integrate homomorphic

encryption into the MLIR framework [4]. By designing appropriate

lowering passes, this information can be conveyed to the LLVM IR

generated by SODA-OPT for both synthesizer backend and general

purpose processors.

5 CONCLUSIONS

This paper overviews the SODA framework, an end-to-end, multi-

level, open-source, hardware compiler composed of a frontend

based on the MLIR infrastructure and a backend leveraging a state-

of-the-art HLS engine. Through its frontend, SODA interfaces with

a variety of high-level productive programming frameworks em-

ployed by domain scientists for novel "converged" applications.

Through its backend, it can generate complete hardware designs

targeting FPGAs from different vendors and ASICs. The end-to-

end nature of the framework provides the agility needed to go

from algorithmic formulation to hardware implementation. The

modularity and extensibility of the framework provide unique new

opportunities for reasoning at the system level, support profile

driven hardware generation, and generation architectures with

new properties (e.g., security).

REFERENCES
[1] V. G. Castellana, A. Tumeo, and F. Ferrandi. 2021. High-Level Synthesis of Par-

allel Specifications Coupling Static and Dynamic Controllers. In IPDPS ’21: IEEE
International Parallel and Distributed Processing Symposium. 192–202.

[2] S. Curzel, N. Bohm Agostini, S. Song, I. Dagli, A. Limaye, M. Minutoli, V. G.
Castellana, V. Amatya, J. Manzano, A. Das, F. Ferrandi, and A. Tumeo. 2021.
Automated Generation of Integrated Digital and Spiking Neuromorphic Machine
Learning Accelerators. In ICCAD: International Conference On Computer Aided
Design. 1–7.

[3] F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, M. Lattuada, M.
Minutoli, C. Pilato, and A. Tumeo. 2021. Bambu: an Open-Source Research Frame-
work for the High-Level Synthesis of Complex Applications. In DAC: 58th Design
Automation Conference. 1327–1330.

[4] S. Govindarajan and W. S. Moses. 2020. SyFER-MLIR: Integrating Fully Homo-
morphic Encryption Into the MLIR Compiler Framework. https://math.mit.edu/
research/highschool/primes/materials/2020/Govindarajan-Moses.pdf

[5] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle, T.
Shpeisman, N. Vasilache, and O. Zinenko. 2021. MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation. In CGO: International Symposium on
Code Generation and Optimization. 2–14.

[6] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman, E. G. Cota, M.
Petracca, C. Pilato, and L. P. Carloni. 2020. Agile SoC development with open ESP.
In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
IEEE, 1–9.

[7] M. Minutoli, V. Castellana, N. Saporetti, S. Devecchi, M. Lattuada, P. Fezzardi, A.
Tumeo, and F. Ferrandi. 2021. Svelto: High-Level Synthesis of Multi-Threaded
Accelerators for Graph Analytics. IEEE Trans. Comput. 01 (2021), 1–14.

[8] M. Minutoli, V. G. Castellana, A. Tumeo, and F. Ferrandi. 2015. Inter-procedural
resource sharing in High Level Synthesis through function proxies. In FPL 2015:
25th International Conference on Field Programmable Logic and Applications. 1–8.

[9] A. Tumeo. 2017. Architecture independent integrated early performance and en-
ergy estimation. In IGSC ’17: Eighth International Green and Sustainable Computing
Conference. 1–6.

1362

