We investigate a multiphase Cahn–Hilliard model for tumor growth with general source terms. The multiphase approach allows us to consider multiple cell types and multiple chemical species (oxygen and/or nutrients) that are consumed by the tumor. Compared to classical two-phase tumor growth models, the multiphase model can be used to describe a stratified tumor exhibiting several layers of tissue (e.g., proliferating, quiescent and necrotic tissue) more precisely. Our model consists of a convective Cahn–Hilliard type equation to describe the tumor evolution, a velocity equation for the associated volume-averaged velocity field, and a convective reaction-diffusion type equation to describe the density of the chemical species. The velocity equation is either represented by Darcy’s law or by the Brinkman equation. We first construct a global weak solution of the multiphase Cahn–Hilliard–Brinkman model. After that, we show that such weak solutions of this system converge to a weak solution of the multiphase Cahn–Hilliard–Darcy system as the viscosities tend to zero in some suitable sense. This means that the existence of a global weak solution to the Cahn–Hilliard–Darcy system is also established.

Existence of weak solutions to multiphase Cahn–Hilliard–Darcy and Cahn–Hilliard–Brinkman models for stratified tumor growth with chemotaxis and general source terms

Signori A.
2022-01-01

Abstract

We investigate a multiphase Cahn–Hilliard model for tumor growth with general source terms. The multiphase approach allows us to consider multiple cell types and multiple chemical species (oxygen and/or nutrients) that are consumed by the tumor. Compared to classical two-phase tumor growth models, the multiphase model can be used to describe a stratified tumor exhibiting several layers of tissue (e.g., proliferating, quiescent and necrotic tissue) more precisely. Our model consists of a convective Cahn–Hilliard type equation to describe the tumor evolution, a velocity equation for the associated volume-averaged velocity field, and a convective reaction-diffusion type equation to describe the density of the chemical species. The velocity equation is either represented by Darcy’s law or by the Brinkman equation. We first construct a global weak solution of the multiphase Cahn–Hilliard–Brinkman model. After that, we show that such weak solutions of this system converge to a weak solution of the multiphase Cahn–Hilliard–Darcy system as the viscosities tend to zero in some suitable sense. This means that the existence of a global weak solution to the Cahn–Hilliard–Darcy system is also established.
2022
Brinkman’s law
Cahn–Hilliard equation
Chemotaxis
Darcy’s law
Limit of vanishing viscosities
Multiphase model
Tumor growth
File in questo prodotto:
File Dimensione Formato  
Existence of weak solutions to multiphase Cahn–Hilliard–Darcy and Cahn–Hilliard–Brinkman models for stratified tumor growth with chemotaxis and general source terms.pdf

accesso aperto

Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1218898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact