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ABSTRACT

We investigate a multiphase Cahn-Hilliard model for tumor growth with
general source terms. The multiphase approach allows us to consider
multiple cell types and multiple chemical species (oxygen and/or
nutrients) that are consumed by the tumor. Compared to classical two-
phase tumor growth models, the multiphase model can be used to
describe a stratified tumor exhibiting several layers of tissue (e.g., prolif-
erating, quiescent and necrotic tissue) more precisely. Our model con-
sists of a convective Cahn-Hilliard type equation to describe the tumor
evolution, a velocity equation for the associated volume-averaged vel-
ocity field, and a convective reaction-diffusion type equation to describe
the density of the chemical species. The velocity equation is either rep-
resented by Darcy’s law or by the Brinkman equation. We first construct
a global weak solution of the multiphase Cahn-Hilliard-Brinkman model.
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After that, we show that such weak solutions of this system converge
to a weak solution of the multiphase Cahn-Hilliard—Darcy system as the
viscosities tend to zero in some suitable sense. This means that the
existence of a global weak solution to the Cahn-Hilliard-Darcy system is
also established.

92C17; 92C50

1. Introduction

The growth of cancer cells is affected by many biological and chemical mechanisms.
Although there already exists a large amount of experimental data resulting from clin-
ical experiments, the possibilities of predicting tumor growth are still in great need of
improvement. In particular, it is crucial to gain a better understanding of the underlying
biological mechanisms such as proliferation, chemotaxis and necrosis.

In the recent past, several mathematical models for tumor growth have been devel-
oped and analyzed from many different viewpoints. Especially diffuse interface models
have gained a lot of interest (see, e.g., [1-4]) and, at least for some of them, it could
already be shown that they compare very well with clinical data (cf. [5-8]). Therefore,
such models might provide further insights into tumor growth dynamics, especially to
understand its key mechanisms and to develop patient-specific treatment strategies.
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Many of these diffuse interface models for tumor growth consist of a Cahn-Hilliard
equation with additional source terms to describe the tumor, coupled to a reaction-diffu-
sion type equation to describe chemical substances which are consumed by the tumor
(usually oxygen and/or nutrients). Most of these models are two-component phase field
models, meaning that only two types of cells, namely tumor cells and healthy cells, are
considered. We refer to [1, 9-16] for the analysis of such models, and to [17-30] for
the investigation of associated optimal control problems.

It is further known that biological materials usually exhibit viscoelastic properties.
For that reason, it was suggested in several works in the literature to include an add-
itional velocity equation in tumor growth models to describe such effects. In some
papers, the Stokes equation was employed to describe the tumor as a viscous fluid (see,
e.g., [31-35]). In other works, Darcy’s law, which is usually used to describe a viscous
flow permeating a porous medium, was chosen instead (cf. [36-38]). In general, in the
context of tumor growth models, both descriptions are a reasonable choice as the
Reynolds number associated with the biological tissues is very small. The decision
between Stokes and Darcy depends on the concrete situation that is to be described.
However, from the viewpoint of mathematical analysis, Darcy’s law is often more diffi-
cult to handle because no derivatives of the velocity field, which could be used to obtain
additional regularity, are involved in the equation. In recent times, Brinkman’s equation
has also become a popular option (cf. [39-42]) as it interpolates between the Stokes
type and the Darcy type description.

The Cahn-Hilliard equation coupled to Darcy’s law is sometimes also referred to as the
Cahn-Hilliard-Hele-Shaw system (especially in the context of two-phase flows). We refer,
for example, to [43-45] for its mathematical investigation. The Cahn-Hilliard-Brinkman sys-
tem was investigated, for instance, in [46,47]. A two-component Cahn-Hilliard-Brinkman
model for tumor growth (including a reaction-diffusion type equation to describe the nutrient
density) was proposed and analyzed in [48]. A simplified variant of this model was studied
in [49-53].

Although such two-cell-species Cahn-Hilliard type models are very viable when describ-
ing the growth of a young tumor whose evolution is mainly governed by proliferation, they
are somewhat limited when processes such as necrosis (cf. [2]) or hypoxia (that is an under-
supply of oxygen, cf. [54]) of tumor cells have already taken place. Indeed, as illustrated in
Figure 1, larger and more mature tumors tend to become stratified (cf. [55-57]), meaning
that the tumor tissue consists of several layers where each of them exhibits different proper-
ties. Indeed, spectroscopic imaging and mapping techniques (see, e.g., [58]) suggest that in
many situations, a tumor consists of three layers: a quickly proliferating outer rim, an inter-
mediate quiescent layer whose cells suffer from hypoxia, and a necrotic core whose cells
have already died off. For a more detailed discussion, we refer the reader to Section 2.

For these reasons, several multiphase models, which allow to describe multiple types
of cell species and nutrients, have already been introduced in the literature. We refer
the reader to [2, 59-65] and the references therein.

1.1. A multiphase Cahn-Hilliard model for tumor growth

In this paper, we combine the ideas of [2] and [48], and we consider the following
multiphase Cahn-Hilliard model for tumor growth:
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div(v) = Sy(o, 6) in Q, (1.1a)
div(T(@,v,p)) +vv = (V@) u+ (Vo) Ng(o,0) in Q, (1.1b)
O + div(p ®@ v) = div(C(¢p, 6)V ) + Sy (¢, 6, p) in Q, (1.1c)

p = —7eAp + ye "W, (¢) + Ny(o,0) in Q, (1.1d)

06 + div(e @ v) = div(D(@,6) VN4 (9, 6)) — Se(¢, 6, 1) in Q, (1.1e)
Ohp =0 on X, (1.19)

Oat =0 on X, (1.1g)
D(¢,6)VNs(@,6)n = Sr(¢, ) on X, (1.1h)
T(p,v,p)n =0 on X, (1.19)

0l_y = 0 in Q, (1.1j)

6|,_y = 09 in Q. (1.1k)

Here, Q C R?, with d {2,3}, denotes a bounded, smooth domain with boundary T,

and T>0 stands for an arbitrary final time. The outward unit normal vector of I' is

denoted by n, 0, denotes the corresponding outward normal derivative, whereas ®

denotes the standard tensor product between two vectors. We further use the notation

Q:=Qx(0,T)and Z:=T x (0, T).
In this system of partial differential equations, the following quantities are involved:

The tumor is represented by the vector-valued phase field function ¢ = (¢,,....¢;)"
(with L € N). For any i € {1,...,L}, the component ¢; denotes the volume fraction
of the i-th tumor cell type. The healthy cells are represented by ¢, which is
defined as

L
Po :zl—Z(pi in Q.
i=1
This ensures that all volume fractions add up to one, that is

L
Z(p,- =1 in Q. (1.2)
i=0

The vector of chemical potentials associated with the phase field ¢ is denoted by pu =
(i, 1) . Moreover, C(-,-) is the mobility tensor. The pair (¢, p) is mainly gov-
erned by the Cahn-Hilliard type subsystem (1.1c)-(1.1d). Here, ¥, denotes the gradi-
ent of a given multi-well potential ¥ that is a coercive function which is bounded from
below and attains its global minimum at 0 and at the unit vectors e;, i =1,...,L. By
this choice, it is energetically favorable (cf. (1.5)) for the components ¢;, i =0, ...,L to
attain values close to one (i.e., only the i-th cell type is present) or close to zero (ie.,
the i-th cell type is not present) in most parts of the domain Q. These regions where
only one cell type is present are separated by a diffuse interface whose thickness is
related to the constant & > 0. Therefore, ¢ is usually chosen to be very small.
Moreover, the constant y > 0 is related to the surface tension at the interface.
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e The nutrients are represented by the vector-valued function ¢ = (ay,....a5)  (with
M € N). For any j € {1,..., M}, the component g; > 0 denotes the density distribu-
tion of the j-th chemical species. These chemical species are usually oxygen and car-
bohydrates which are consumed by the tumor cells. The functions N, and N,
denote the partial derivatives of the chemical free energy density N (see (2.8)) with
respect to the ¢ and the o variable, respectively. Moreover, D(-,-) denotes the
mobility tensor corresponding to &.

e The function v = (vy,...,v;) represents the volume-averaged velocity field of the
mixture, and p denotes the associated pressure. The quantity v in (1.1b) stands for
the permeability and is assumed to be a positive constant. The symbol T(¢,v,p)
denotes the viscous stress tensor which is defined as

T(e,v,p) := 2n(e@)Dv + A(@)div(v)I — pl, (1.3)

where
Dv = % (Vv+(Vv)") (1.4)

stands for the symmetrized velocity gradient. Here, n and / are nonnegative func-
tions representing the shear viscosity and the bulk viscosity, respectively. If 1 and A
are identically zero, (1.1b) is known as Darcy’s law, and we refer to the system (1.1)
as the multiphase Cahn-Hilliard-Darcy system (MCHD). If n and A are positive,
(1.1b) is called the Brinkman equation, which can be regarded as an interpolation
between Darcy’s law (1 =1 =0 and v > 0) and the Stokes equation (1,4 > 0 and
v=0). In this scenario, the system (1.1) is referred to as the multiphase
Cahn-Hilliard-Brinkman system (MCHB).

e The homogeneous Neumann boundary conditions (1.1f) and (1.1g) are standard
choices for Cahn-Hilliard type equations. The condition (1.1f) entails that the mass
flux over the boundary is zero. If the diffuse interface associated with the phase-
field ¢ intersects the boundary I', the condition (1.1g) enforces a perfect ninety
degree contact angle. However, as we are mainly interested in situations where the
tumor is confined in the domain Q (i.e,, the interface does not intersect the bound-
ary at all), the condition (1.1g) is primarily motivated from the viewpoint of math-
ematical analysis.

e The condition (1.1h) describes the nutrient flux over the boundary which is gov-

erned by the source term Sr. In particular, if Sr is identically zero, no nutrients
can enter or leave the domain over the boundary.
In the Brinkman case (1, 4 > 0), the condition (1.1i) can be understood as a “no
friction” boundary condition on the velocity field. In contrast to more traditional
boundary conditions, (1.1i) allows us to handle general solution dependent source
terms S,(¢,6) in (1.1a). For instance, the no-slip boundary condition v|y =0 or
the no-penetration boundary condition v|5 -n =0 would enforce the unpleasant
compatibility condition [,,Sy(¢,6) dx = 0, which is avoided by using the no-friction
boundary condition (1.1i). A further advantage of the no-friction condition is that
no boundary contributions of the velocity field appear in the weak formulation of
the system (1.1). This is very favorable for the mathematical analysis and also for
finite element approximations in the context of numerical methods.
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In the Darcy case (7 = 0 and 4 = 0), the boundary condition (1.1i) degenerates to a
homogeneous Dirichlet boundary condition on the pressure, i.e., p|s = 0.

e The functions S,, Sy, and S, are generic source terms that can be specified depend-
ing on the application. In Section 2.1, we present a concrete example for a suitable
choice of these source terms in a four-cell-species tumor model.

Furthermore, it is worth mentioning that the model (1.1) is associated with the follow-
ing free energy (cf. [2]):

'\8 L
E(p,6) = ngel‘l‘((p) +%Z |Veo,|* dx + JQN(qo, ) dx. (1.5)
i=1

Here, the first integral is referred to as the Ginzburg-Landau energy. The second contri-
bution is the chemical free energy. It is associated with the nutrient density N which is
usually assumed to be of the form

Ls
N(op,06) =
(¢.0) ==
for a suitable function G. A reasonable choice for the function G in a four-cell-species
tumor model is presented in Section 2.2.
In the absence of source terms (ie., S, =0, S, =0, S; =0, and Sr = 0), we obtain

o* — G(g,0)

the following energy law:

d
§E0.0)+ | 21(0) DV oo ax
Q (1.6)
+ J C(¢,6)Vu: Vu+D(¢,6)VNs(9,06) : VN4 (p,6)dx = 0.
Q

If the tensors C and D are chosen appropriately (i.e., at least positive semidefinite),
then both integrals on the left-hand side are nonnegative. This implies that the energy
is decreasing along solutions of the system (1.1) over the course of time. Therefore,
(1.6) describes the dissipation of the free energy, and in this context, the integrals on
the left-hand side of (1.6) can be understood as the dissipation rate. This means that, at
least in the absence of source terms, the model (1.1) is thermodynamically consistent.

The multiphase Cahn-Hilliard-Darcy model (MCHD) is heavily based on the model
derived in [2]. The only difference is that we are using a different right-hand side in the
velocity equation (1.1b), which is of the same type as the one proposed for the two-cell-
species scenario in [48]. We point out that this choice plays a crucial role in the deriv-
ation of the energy dissipation law (1.6) and thus, it also provides some advantages for
the mathematical analysis.

The Darcy type description is particularly suitable if the viscoelastic flow associated with
the biological tissues is assumed to behave like a viscous fluid permeating a porous
medium. Although there are some situations where this assumption is justified, this is not
always the case. Therefore, the multiphase Cahn-Hilliard-Brinkman model (MCHB) might
sometimes provide a better description. At least formally, the model (MCHB) converges to
the model (MCHD) as the viscosities 7 and 4 tend to zero. We will show that this asymp-
totic limit can be rigorously verified on the level of weak solutions.
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In [2], also several numerical simulations for the system (MCHD) (with slightly different
boundary conditions) were presented. In the case L = M = 1, where only two cell species
(namely tumor cells and healthy cells) and one nutrient species are considered, the exist-
ence of weak solutions to the Cahn-Hilliard-Darcy model with a special choice of source
terms and slightly different boundary conditions compared to (1.1) was established in [66].
For further mathematical investigations related to the two-cell-species Cahn-Hilliard-Darcy
system we refer the reader to [66-69] and the references therein.

Existence results for solutions to multiphase Cahn-Hilliard-Darcy systems for tumor
growth which are related to (1.1) can be found in [70,71]. Although the models studied
in [70] and [71] allow for more general potentials ¥ (including singular potentials like
the logarithmic Flory-Huggins potential) which definitely makes the construction of sol-
utions more challenging, they can at least to some extend be understood as a simplified
variant of the model (1.1). For instance, the systems investigated in [70,71] are limited
to three cell species (L=2) and one nutrient species (M =1), the mobility tensors
C(-,-) and (-, -) are constant diagonal matrices, the nutrient equation is quasi-station-
ary, and chemotaxis mechanisms are neglected.

In the special case L=1 and M =1, the Cahn-Hilliard-Brinkman model (MCHB)
was introduced in [48], where also the existence of weak solutions was established. A
numerical investigation can be found in [50]. In [49], a simplified version of this model
was investigated, where the time derivative and the convection term in the nutrient
equation are neglected. This means that the simplified nutrient equation is a quasi-static
elliptic equation. For this model, the authors proved strong well-posedness and showed
that the solutions converge to the corresponding Cahn-Hilliard-Darcy model as the vis-
cosities  and /A tend to zero. For the analysis of weak and stationary solutions of this
system with singular potentials, we refer to [53]. In [51,52], optimal control problems
for this simplified model were investigated. We further want to mention [72], where the
optimal control of a nonlocal Cahn-Hilliard-Brinkman model (without nutrient equa-
tion) was studied.

1.2. Structure of this paper

The paper is structured as follows. In Section 2, based on the general multiphase
Cahn-Hilliard model (1.1), we present a concrete example for a four-cell-species tumor
model (L =3) with one species of nutrient (M =1). In particular, we describe how the
source terms and the chemical free energy density can be chosen (in accordance with
the mathematical analysis) to describe biologically relevant mechanisms. In Section 3,
we first fix some notation, recall auxiliary results and introduce assumptions that are
necessary for the mathematical analysis. After that, we present the main results of our
paper. The existence of a weak solution to (MCHB) is established in Theorem 3.5. In
Theorem 3.7, we show that the weak solutions of the system (MCHB) constructed in
Theorem 3.5 converge to a weak solution to the system (MCHD) as the viscosities %
and A tend to zero in a suitable sense. This is indeed a novel result since even in the
two-cell-species model presented in [48], this asymptotic has not been investigated. In
particular, this proves the existence of weak solutions to the model (MCHD). We point
out that this “Darcy limit” was also established rigorously in [49] for strong solutions
to a related two-cell-species model with a simplified quasi-stationary nutrient equation.
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Figure 1. Schematic representation of the layers of a stratified tumor (L =3).

The proof of Theorem 3.5 is given in Section 4, whereas the proof of Theorem 3.7 is
presented in Section 5.

2. A concrete tumor model with four cell species

In order to describe a stratified tumor by the system (1.1), we now suggest explicit
choices for the source terms S,, S,, S5, and Sr as well as the chemical free energy
density N. As often suggested in the literature (see, e.g., [55-57] and the references
therein), we assume that the tumor exibits three layers:

a proliferating rim whose cells consume nutrients and oxygen to proliferate rapidly,
an intermediate quiescent region whose cells do not proliferate any more as they
suffer from hypoxia (lack of oxygen) and/or an undersupply of nutrients,

e and a necrotic core whose cells have already died due to the lack of oxygen
and nutrients.

An illustration of such a stratified tumor can be found in Figure 1. In the mathematical
model, we thus choose L =3 to describe the three tumor layers as well as the healthy
cells. The proliferating tumor cells are associated with ¢,, the component ¢, stands for
the quiescent tissue, whereas ¢; corresponds to the necrotic region. The volume frac-
tion of the healthy cells is thus given as

3
Py =1— Z(Pi‘
i=1

For simplicity, we restrict ourselves to consider oxygen and nutrients as one single
chemical species, meaning that M =1. Therefore, the nutrient density is a scalar func-
tion; to emphasize this, we will thus write ¢ instead of 6.

2.1. The source terms

We first present some explicit choices for the source terms. We assume that S,, S,
and S, depend only on ¢ and ¢ but not on u. Thus, with some abuse of notation, we
write
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So(0,0) = Se(@,0, 1),  So(p,0) = Se(gp, 0, p).
For the source term of the nutrient equation (1.1e), we make the ansatz
Se(@,0) = —Co,0 + B(og — 0). (2.1)

Here, the term —C¢,0 describes the consumption of nutrients by the proliferating cells
at a constant rate C > 0. Moreover, B denotes a positive amplifying constant, and the
function oq stands for a given nutrient concentration provided by preexisting blood
vessels permeating the tissue. Hence, the term B(oq — a) describes supply (¢ < aq) or
deprivation (o > 0q) of nutrients by the vasculature. In a scenario of pure avascular
growth, this term can be neglected.

For the source term in the phase field equation, the following choices are reasonable:

Sqo(‘/” o) = (@01(730' - Q). Qo — Ag,, Ap, — Dq’s)T’ (2.2a)

)
5u(0.0) = (1p(@)(Pr - Q). T p(e)(@= A L pe)(A-D) . (20)

We point out that similar choices were discussed in [2] for a three-cell-species tumor model
(L=2) neglecting the quiescent region. In (2.2), the positive constants P, Q, A and D
denote the proliferation rate, the quiescence rate, the apoptosis rate, and the degradation
rate, respectively. Moreover, p stands for the polynomial p(s) = s*(1 — s2)%, s € R.

The option (2.2a) models the increase of proliferating tumor cells at the rate P. The
proliferating cells become quiescent at the rate Q which in turn means that the quies-
cent cells increase at the rate Q. Similarly, due to apoptosis, the quiescent cells decrease
and the necrotic cells increase at the rate \A. Eventually, the necrotic cells degrade at the
rate D.

The additional idea in (2.2b) is that the expressions p(¢;), i=1, 2, 3, are positive at
the diffuse interface (i.e., in (0, 1)) but zero at the values corresponding to the regions
where only one cell type is present (i.e., in {0, 1}). This means that the evolution of the
interface is directly influenced by the source terms. The scaling factor 1 is chosen as in
[2,3] in order to retain the possibility of passing to the (formal) sharp interface
limit ¢ — 0.

Furthermore, as shown in [2], the property

L

Y =g tlp=1,
i=0

where 1 = (1,..., 1)T € RL, entails that the source term S, needs to be chosen as
Sv(9,0) =1-S,(p,0) + S, (9, 0), (2.3)

where S, (¢, ) is the source term associated with the healthy tissue described by ¢,,.
For instance, if j € {1,..., M} is chosen as suggested in (2.2a), a reasonable choice is

Sp,(@0,0) = —K Pa ¢, for some k € [0,1]. (2.4)

In the case k=1, the mass gain of tumor cells equals the mass loss of healthy cells.
This would be the case if all newly emerged tumor cells originate from corrupted
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healthy cells. If ¥ =0, the formation of tumor cells does not mean any loss of healthy
cells, whereas the choice k € (0,1) interpolates between these rather extreme scenarios.
If S, is given by (2.2b), we recommend to choose S, (¢,a) = 0 as proposed in [2].
Although the options (2.2), (2.3) and (2.4) make sense from the modeling perspective,
they do not fulfill the assumptions A5 and A6 we have to make in Section 3.3 for the
mathematical analysis. Namely, we require that

Sv(.0)| <A, [Se(9.0)| < B(l@| + o] +1)

for constants A, B > 0 depending neither on ¢ nor on g.

To overcome this issue, we replace the term Po in (2.2) by a bounded expression.
We assume that there exists a critical nutrient concentration ¢, > 1 such that the prolif-
eration does not increase any more, even if a larger amount of nutrient (¢ > ¢,) is
available. Therefore, we introduce a nondecreasing function P € C}(R) which satisfies

{P(s) =Ps forall s€[0,c,— 1]

2.5
P(s) = Pc, for all s € [c),00). @5)

Moreover, for any fixed >0, we introduce a truncation function h, € Ci(R) which
satisfies

h,(s) =s for all s € [—r,1+7].
If the multi-well potential ¥ is reasonably chosen and r> 0 is not too small, the values
of the components ¢; will not exceed the interval [—r,1+ r]. Choosing r=1 should

usually be more than enough to ensure this condition. In this case, replacing ¢, by
b, (¢;) does not have any effect on the solution of the system (1.1). We thus choose

Sp(¢,0) = (h(¢1) P(0) — Qo). Qo) — Ap,, Ag, — Dhy(¢3)),

(2.6a)
Sp, (@, 0) = —KkP(0)h, () for some x € [0, 1],

or

500:0)= (1 D(0)(P(0) ~ Q). L D)@~ A). L po(A-D)) .

S0, (9:9) =0,

(2.6b)
where p, := poh, is a bounded function. It is easily seen that both (2.6a) and (2.6b)
satisfy the assumption A5. Moreover, if the source term S, is chosen as proposed in
(2.3), it fulfills the assumption A6 for any x € [0, 1].

For the source term Sr appearing in the boundary condition (1.1h) for the nutrient
equation (1.le), we assume that it depends only on the nutrient density o. With some
abuse of notation, we thus write

Sr(O’) = Sr((p, O').
As suggested in [48,49], we propose the choice
Sr(o) = K(or — 0), (2.7)
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where or is a given function describing a preexisting nutrient supply over the boundary,
and K is a nonnegative permeability constant. Notice that in the case K>0, (1.1h) is a
Robin type boundary condition, whereas if K=0, it reduces to a no-flux condition.
Moreover, the formal asymptotic limit K — oo would produce the Dirichlet condition
g = or on X. This limit has been investigated in [49] for a simplified two-cell-species
version of the system (1.1) with a quasi-stationary nutrient equation (with M =1).

2.2. The chemical free energy density

For the chemical free energy, we use a similar decomposition of N as proposed in [2,
Sect. 1]. Namely, we choose

N(g.0) =Z|of ~ G(9.0). (2.8)

where the function G is defined as
G(@,0) = 1,00, +£(0)p, + &(0)@;. (2.9)

Here, the term y,0¢, describes the chemotaxis mechanism which drives the proliferat-

ing tumor cells to grow toward regions of high nutrient concentration. We further
assume that there exist critical nutrient concentrations 0 < ¢, < ¢; < oo and functions

f,g € C*(R) that satisfy the following conditions:

f>0 on (cucy), (2.10)
ff <0 on [cg,00), .
g >0 on (—00,¢c,), (2.11)
g <0 on [¢,,00). |

The reasons behind these choices are the following:

e If the nutrient concentration lies between the critical values c, and c,, we expect
the cells to become quiescent due to a lack of nutrient. This means that the amount
of quiescent cells (that are associated with ¢,) will increase. We describe this
behavior by assuming that f is positive on (c,, ¢,;). As a consequence the whole
term f(0)¢, is positive, provided that ¢, is positive, and with regard to the energy
E presented in (1.5), it is thus energetically favorable if ¢, further increases.

e If the nutrient concentration is below the critical value c,, we expect the cells to
necrotize, meaning that the amount of necrotic cells (described by ¢;) will increase.
To model this behavior, we assume that g > 0 on (—o0,c,). This entails that the
term g(o)¢; becomes positive if ¢ is positive. It is thus energetically favorable if
(3 increases.

e We point out that in (2.10), the sign of f on the interval (—oo,¢,) is not prescribed
as this strongly depends on the modeling details. For instance, if £ <0 on
(—00,¢n), the cells will not become quiescent as long as the nutrient concentration
is below c,. They will rather necrotize due to the term g(o)¢@;. On the other hand,
if £>0 on (—o0,c,), there is a competition between quiescence and necro-
sis effects.
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In the mathematical analysis, we are only able to handle the case where f and g are
affine functions (see Assumption A4). Hence, in accordance with (2.10) and (2.11), the
only reasonable choices are

f(s) ;== a(cg —s), sER, and g(s):=fch, —s), seER,

with given positive constants o« and f acting as weights.

2.3. The tensors C and D

In general, the mobility tensors C and D can be fourth-order tensors (see A2 in Section
3.3) or second-order tensors (i.e., matrices; see Remark 3.3(a)). A simple but very com-
mon choice is to choose C € RM*! and D € RM*M
positive functions as diagonal entries. However, it is worth mentioning that under the
assumptions in Section 3.3, even more complicated choices would be possible, as long
as the tensors are uniformly positive definite.

In the present scenario with L =3 and M =1, we consider a matrix-valued function
C:R’ x R — R> and a scalar function D : R’ x R — R. We assume that the func-
tion D is uniformly positive, and that

[Cg.0)];; = mi(@,0)0y, i,j=1,...,L, (2.12)

as diagonal matrices with uniformly

where m; :R* xR — R, i=1,...,L are given, uniformly positive functions and ¢
stands for the Kronecker symbol.

3. Mathematical analysis
3.1. Notation

We first fix some notation that will be used throughout the paper.

The natural numbers excluding zero are denoted by N, whereas the natural numbers
including zero are denoted as Nj. For any Banach space X we denote its associated
norm by | - ||y, and its topological dual space by X’. The duality pairing of X’ and X is
denoted by (-.-)y. If X is a Hilbert space, we denote its inner product by (-,-)y. Note

that for Banach spaces X and Y, the intersection X NY is also a Banach space with
respect to the norm || - [y y == | - lx + |- -

For any k € Ny, C*(U) stands for the space of k-times continuously differentiable
functions on any set U for which this definition makes sense. The subspace Cf(U) con-
sists of all bounded functions in C*(U) whose partial derivatives up to the order k are
also bounded. Note that Cj(U) is a Banach space with respect to its standard norm
which is denoted by || - ”c’;- Moreover, CK(U) denotes the space of C¥(U)-functions that

have compact support in U. In the case k=0, we just write C(U) = C°(U), C,(U) =
C)(U), and C.(U) = C*(U).

For any 1 < p < oo and k > 0, the standard Lebesgue and Sobolev spaces defined on
Q are denoted as LP(Q) and W*?(Q), and the corresponding norms are denoted as
I Ny = Il - I and [ - llyrp(@) = I - lwep> respectively. In the case p =2, these spaces
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are Hilbert spaces and we use the standard notation H*(Q) = W*2(Q). A similar nota-
tion is used for Lebesgue and Sobolev spaces on I', where the norms are denoted by

- Weoery = 11+ Mg and 1= llawsoqry = (- 1y
For brevity, we sometimes write L?, W*?, H* and LY, W];’p , and HX to denote the
corresponding spaces of vector or matrix-valued functions defined on Q and T,

respectively.
We further define the Hilbert space

HZ(Q;R") == {¢ € H*(;R") : 0n{ =0 a.e. on I'}
for any n € N. Moreover, we set
L3, (Q) := {f € L*(;RY) : div(f) € L*(Q)}.

Here, the relation div(f) € L*(Q) means that the divergence exists in the weak sense
and belongs to L?(Q). Notice that L% (Q) is a Hilbert space when equipped with the
inner product

(£ 8)% = (£, §)} + (div(f). div(g)% for all f.g € L} (),

and its induced norm. Moreover, we recall that for any f € L}, (Q), the expression f - n
is well defined on I' by the following integration by parts formula:

(€1 ) = Lf Vdx+ JQd) div(f)dx for all ¢ € H\(Q);  (3.1)

see, e.g., [73, Sect. II1.2]. Moreover, there exists a positive constant Cgiy, which depends
only on Q, such that

I - 0y < Calfllrz, -

For vectors a = (ay,...a;) € RFand b= (by,...b;)" € R’, we denote the standard ten-
sor product by a ® b which produces an element of R**/ and is defined componentwise
as (a@b); = aib; forall i € {1,...k}, j € {L,...,1}.

For given matrices A,B € R"*", we define the scalar product

n m

i=1 j=1
Furthermore, for any fourth order tensor C in R™"*™  and any matrix A € R"™"™,
we set

n

[CAl; = Z [Cliju [Aly for all i € {1,..,n} and j € {1,...,m},

k=1 I=1

and we use the notation

1

|A|=(z HAL»J-V), u:( Hchjsz).
i=1 j=1 ik=1j,1=1

=
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3.2. Auxiliary results

Before diving into the obtained results, let us first introduce some useful auxil-
iary results.

The following interpolation result for Sobolev spaces on bounded domains can be
found in [74, Sec 4.3.1, Thm. 1].

Lemma 3.1 (Interpolation between Sobolev spaces). Suppose that Q C R? with d € N is
a bounded smooth domain. Furthermore, let 0 € (0,1) be arbitrary, and let 1, s, and s,
be any real numbers satisfying

r=(1-—0)so+ 0Os;.

Then H'(Q) is the real interpolation of H*(Q) and H*' (Q) with interpolation parameter
0, that is,

H'(Q) = (H*(Q), H" (Q))g,,-
In particular, there exists a constant C> 0 such that for all f € H*(Q) N H(Q),
-0 0
Il (@) < Cllf gy Nl )

Next, we recall a well-known result related to the solvability of the divergence equation.
The lemma and the corresponding proof can be found, e.g., in [73, Sec. IIL3].

Lemma 3.2. Let Q C RY, d > 2, be a bounded domain with Lipschitz boundary T, and

let g € (1,00) be arbitrary. Then, for every f € L1(Q) and a € Wl_é’l(l") with
dex:J a-nds, (3.2)
Q r

there exist a strong solution u € Wh1(Q) to the problem

{ diviu) =f in Q,

u—a on I,
and a positive constant Cq,, depending only on Q and gq, such that
[l wrai) < Caq(flla) + lallwr-ver(r))-

We further recall the following inequalities:

e Korn’s inequality: Let Q C RY with d > 2 be a bounded domain with Lipschitz-
boundary. There exists a positive constant Cx depending only on Q such that for
all ve H'(Q),

Wl < Ce(Ivlze + IDY]IE) 2. (3.3)

e Gagliardo-Nirenberg inequality: Let Q C R? with d > 2 be a bounded domain
with Lipschitz-boundary. We assume that p,q,r € [1,00], m,j € Ny with 0 <j < m,
and 0 € [£, 1] satisfy the relation

e (G
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Then, there exists a positive constant Cgn depending only on Q, d, m, j, p, q, 1,
and 0, such that for all f € W™"(Q) N LI(Q),

1D < Conl|fl[3gme 1€l (3.4)

e Agmon’s inequality (see, e.g., [75, Lem. 4.10]): Let Q C R? with d € {2,3} be an
open, bounded domain of class C*. There exists a positive constant Cag such that
for all f € H*(Q),

£l < CaclIfll £l (3.5)

3.3. Assumptions

The following assumptions are supposed to hold throughout the paper.

Al The set Q ¢ R? with d € {2,3} is a smooth, bounded domain with boundary I" :=
0Q. Moreover, the parameters v, ¢, and y are given positive constants.

A2 The phase mobility tensor C and the nutrient mobility tensor I are bounded, con-
tinuously differentiable functions

C - RL % RM N RLXdXLXd’ D: RL % RM _ RMXdXMXd. (36)
Moreover, C and D are symmetric in the following sense:

ikl = [C}klij for all l,k - {1,...,L} and ],l S {l,...,d},
ikl = []D)}kl,«]- for all i,k € {1,..,M} and j,l€{1,...,d}.

There further exist positive constants C, and D, such that for all p € RE s € RM,
A € RM™ and B € RM*4,

ColA]” < C(p,s)A: A,  Do/B|> <D(p,s)B:B.

This means that the tensors C(p,s) and D(p,s) are uniformly positive definite for
all pe Rl and s € RM.

A3 The viscosities are functions 7,1 € C,(R*;R), and there exist constants 7,7, /s
such that, for every p € RE, it holds

0<n<np)<m,  0<A(p) < A (3.7)
A4 The chemical free energy density N is defined as
N:RExRM &R, N(ps)= 7? IsI> — G(p. s). (3.8)
Here, y, is a positive constant, and the function G is given as
G(p,s) =s Bp+a-p+b-s+c foral pcRiseRY, (3.9)

with prescribed coefficients B € RML a2 e RE b e RM and ¢ € R. We will use the
notation
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«p(P)S): G(p,s) =B's+a, Ny(p,s):=N(p,s) = -B's —a,
Go(p-s) := 0sG(p,s) =Bp+b,  Ne(p,s) :== ON(p,s) = 1,5 —Bp — b,
Goy(p:$) 253 bG(p:s) =B, o (P>$) =53N(P, s) =B,
Goo(p>8) := 0;G(p.s) =0, ao'(P’ s) := N (p:s) = 7,1,
Gyy(p,s) == 3,G(p.s) = 0, Nyo(p:s) = 8 N(P’ s) =0,
where I stands for the identity matrix in RM*M 1 particular, we have N, = —G,,
Nsy = =Gy, and Ny, = —Gy,,. Consequently, there exist positive constants Ag,
Bg, Cg and Dg such that for all p € Rl and s € RM :
|G(p>s)| < Ca(lplls| + [p[ + Is| + 1), (3.11)
Gy (p>5)| < Ac(ls| + 1), |Gq(p>s)| < Ba(|p| + 1), (3.12)
1Gso(p>s)|| < Do, (3.13)
where || - || stands for the operator norm. This directly implies the existence of posi-
tive constants Ay, By, and Cy such that for all p € Rl and s e RM .
IN(p.s)| < Cx([s|” + Iplls| + p| + [s| + 1), (3.14)
Ny (ps)| < An(Is| +1),  [Na(p,s)| < Bn(lp| + [s| + 1). (3.15)

It further follows that Ny, is uniformly positive definite with

ENoo(p,8)E = 1,€] (3.16)

for all p € R" and & s € R™. In combination with the assumptions on the tensor D
in A2, this ensures that the nutrient equation (1.le) has a parabolic structure.
Moreover, for all p € R and s € RM the matrix Ny, (p,s) is invertible and the oper-
ator norm of the inverse matrix is uniformly bounded by

1(Noo(p.5)) Il < 7, (3.17)
A5 The source terms S, and S, are continuously differentiable, vector-valued functions
Sp :REXRM x RF - R, S, RF x RM x R — RM. (3.18)

We further assume that there exist continuously differentiable functions
Ap :REXRM S RE 0,0 RE X RM — REXE (3.19)
As :REXRM - RM, 0, : RF x RM — RMX, (3.20)

such that S, and S, exhibit the following decomposition:

Se(p»s,m) = Ay (p,s) — O, (p> s)m, (3.21)
Ss(p,s,m) = As(p,s) — 05(p, s)m (3.22)

for all p,m € R" and s € R,
Moreover, we demand that there exist positive constants A,,Aq, B, and B, such
that, for all p € RF and s € RY, we have

[Ag(p,8)| < Ap(lpl +[s| +1),  [[04(p,s)l| < By, (3.23)
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|As(p>s)| < A(lpl +Is| + 1),  [|0s(p,s)|| < Bs. (3.24)

In particular, this entails that there exists a positive constant Bg such that, for all
p>m € Rl and s € RM,

[So (P, 8, m)| + [So(p, s, m)| < Bs(|p| + [s] + [m[ +1). (3.25)
A6 The source term S, is a continuously differentiable scalar function
Sy :RFExRY - R (3.26)

We further assume that there exists a positive constant Ag such that for all p € R*
and s € RM,

[Sv(p>s)] < As. (3.27)
A7 The boundary source term Sr is continuously differentiable, vector-valued function
Sr: R x RM — RM.
Furthermore, there exists a continuously differentiable function
Ar i REXRM 5 RM, (3.28)
and a nonnegative constant K such that
Sr(p,s) = K(Ar(p,s) —s), (3.29)

for all p € R* and s € RM. Moreover, there exists a positive constant Ar such that
for all p € R and s € RM,

|Ar(p,s)| < Ar. (3.30)

A8 The potential ¥ belongs to C?(R';R) and there exist positive constants Ay, By
such that for every p € R” it holds that

¥(p) > Aylp|* — By. (3.31)

In addition, the potential can be decomposed as ¥ = ¥V + ¥?) with ¥, 9@ ¢
C*(RY; R), where ¥ is convex, and ¥® : RF — R is Lipschitz-continuous.
For the gradient and the Hessian of ¥, we will write

Y, =VY¥, Y,,:= D*¥,

and we will use an analogous notation for ¥ and Y.
Moreover, we assume:
A8.1 If the matrix-valued function 6, in A5 is uniformly positive definite, that is
30, >0 Vp,LeRE seRM: (70,(p,s)C > 0olC)% (3.32)
there exist an exponent p € [2,4], and positive constants By, Cy and Dy, such that
()| < Bupl + 1) [¥o(p)] < Cellpl '+ 1) .
[¥po(p)| < De(pl”* +1).

for all p € RE.
A8.2 If the matrix-valued function 0, in A5 is not uniformly positive definite, that is
(3.32) does not hold, there exist positive constants By, Cy and Dy such that
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[¥(p)| < Be(lpl” + 1), [¥p(p)l < Co(lpl + 1), [Ppy(p)l <Dv  (3.34)

for all p € R-.
A9 The diffuse interface parameter ¢ is a fixed positive constant which satisfies

VA Av

. (3.35)
8C

Here, Ay is the constant from (3.31), y, and Cg are the constants from A4, and

y > 0 is the surface tension parameter.

Remark 3.3. (a) Instead of fourth-order tensors, C and D could also just be matrices
(second-order tensors) in RE*F and RMM, respectively. This because a matrix can still
be described by an associated fourth-order tensor in the following way:

Suppose that n,m € N, and M € R™" is a given matrix. Then the corresponding
fourth-order tensor M € R™ ™™ ig defined as

[M]ijkl = 0y[M]y for all i,k € {1,..,n} and j,I € {1,...,m},

where 0 stands for the Kronecker symbol. In particular, for any matrix A € R"", it
thus holds

n n

[MA]; = Z Y (M (Al = Z M) [Aly; = [MA]; for all i € {1,...,n}
k=1 I=1 k=1

and j € {1,...,m},

which means MA = MA.

(b) We point out that the tensors, the nutrient density and the source terms proposed
in Section 2 for the special case L=3 and M =1 fit into the framework of the above
assumptions. To be precise, the source terms S, defined in (2.1) and S,, introduced in
(2.6) satisty A5 (with 0, =0 and 0, = 0), the source term S, proposed in (2.3) fulfills
A6, the nutrient density defined in (2.8)-(2.11) satisfies A4, and the tensors C and D
introduced in Section 2.3 fulfill A2. Moreover, the boundary source term proposed in
(2.7) satisfies A7 with Ar(p,s) = or, provided that the prescribed function or is suffi-
ciently regular.

(c) As the positive coefficient ¢ is related to the thickness of the diffuse interface, it is
usually chosen to be very small in the applications. Therefore, assumption A9 is not a
severe restriction.

3.4. Main results

Let us now present the main results of this paper. First, after introducing the notion of
weak solutions to the multiphase Cahn-Hilliard-Brinkman system (MCHB), we state
the existence of such a weak solution. Unfortunately, in this general setting, we are
not able to prove the uniqueness of weak solutions. This is mainly due to the fairly
low regularity of the nutrient variable 6, of which we can merely establish o €
L>(0,T;L*) N L*(0, T; H').

A weak solution to the multiphase Cahn-Hilliard-Brinkman system (MCHB) is
defined as follows.
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Definition 3.4 (Definition of a weak solution to (MCHB)). The quintuplet (¢, g, a,v,p)
is called a weak solution to the multiphase Cahn-Hilliard-Brinkman system (1.1) if the
following conditions are satisfied:

(i) The functions (¢, u, a,v,p) possess the regularities

¢ € H'(0,T;(H")") nC([0, T; L*) N L*(0, T; H'),

o c W0, T; (HY) nc([o, T]; (H'")) N L=(0, T; L*) N L*(0, T; HY),
ol € C([0,T};L}), @y € L*(0, T; L}),

puel0,T;HY), vel*0,T;H"), peli0,T;L%),

div(e ® v) € L2(0, T; I7), div(e @ v) € L'(0, T; L?).

(3.36)

(ii) The weak formulation

J T(o,v,p) : Vp+uvv-npdx = J (Vo) u-n+ (Vo) 'Ny(0,6) -ndx,  (3.37a)
Q Q

(0. C)pp + LdiV(tp ®v)-{dx = —LC(% o)Vu:VEi+S,(p.0,p) - dx

(3.37b)
J p-0dx = J eV : VO + ye "W, (0) - 0+ N,(p,0) - 0dx, (3.37¢)
Q Q
(O, &) +J divie®@wv) - &dx = J D(¢,6)VN4(p,0) : VEdx
e @ (3.37d)

—J s,,<<p,a,u>-édx+J Sr(p,0) - £dS,
Q T

holds almost everywhere on (0,T) for all test functions 5 € H'(Q;R?), ¢, 0 ¢
H'(Q;RY) and & € H'(Q; RM). Tt further holds that

div(v) = S,(p,6) ae. in Q, (3.37e)
0li_o =, a.e. in Q, (3.371)
(6,0 @) = (60, @) for all d € H'(Q;RM). (3.37g)

The corresponding existence result reads as follows.

Theorem 3.5 (Existence of weak solution to (MCHB)). Suppose that the assumptions
A1-A9 hold, and let ¢, € H'(Q;R") and 6y € L*(Q; RM) be any initial data.

Then, there exists a weak solution (¢,p,o,v,p) to system (1.1) in the sense of
Definition 3.4. In addition, this solution satisfies

o € L*(0, T; H)NC([0, T);H'), Y,(p) € L*(0,T;L*) N L*(0, T; L%). (3.38)

Moreover, there exists a positive constant Cg that may depend on the initial data and the
constants introduced in Section 3.3 except for ny such that
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||(:D||L”°(O, T:H")NL2(0, T:H?) T ||°'||L°c(o, T.2)nL2(0, THY) T ||°'HL4(0, T;I2)
el 0.z + Wl ey + 1VAT0) DY) + Ilsmio e
+ Mo (@)l 20, 2)r120. 1:5) + VNG (0,6) 120, 7212)
+ [[div(e @ )l s 0, 7o) + [[div(e @ ¥)[ a0, 7pr) < C-

(3.39)

The proof of this theorem will be presented in Section 4.

The second main result is the existence of weak solutions to the multiphase Cahn-
Hilliard-Darcy system (MCHD). Roughly speaking, this can be established by investigating the
“Darcy limit” where the positive viscosities # and 4 in the Cahn-Hilliard-Brinkman system
(MCHB) are sent to zero. In this way, we can show that the corresponding weak solutions of
the system (MCHB) converge to a weak solution of the system (MCHD).

To begin with, let us start by presenting the notion of weak solution for the
Cahn-Hilliard-Darcy model.

Definition 3.6 (Definition of a weak solution to (MCHD)). The quintuplet (¢, u, 6, v, p)
is called a weak solution to the multiphase Cahn-Hilliard-Darcy system (1.1) if the fol-
lowing conditions are satisfied:

(i) The functions (¢, u, 6, v,p) possess the regularities

@ € WhS(0, T; (H')') n C([0, TJ; 1) N L*(0, T; H'),

o € Wh(o, T; (W) nc(fo, T]; (WhH) n L>(0, T; L*) N L*(0, T; H'),
olr € C([0, T} L}), ofr € L*(0,T;Ly), we L*(0,T;H'),

p e L0, T L) N L0, T; W), we L2(0, T;L3,),

div(p ® v) € L5(0, T; (H')) N L (0, T; I?), div(e @ v) € L'(0, T;L").

(3.40)

(i) The weak formulation

|, v nemondc= | (Vo) wnt (Vo) Nalpo) nds Gata)
Q Q
(0.0 + JQdiV(fp ®v) {dx= —JQC(% 6)Vu:V{+S,(p.0,p) {dx, (3.41Db)
J u-0dx = J 76V : VO + e ' Wy(p) - 0+ Ny(0,6) - 0dx, (3.41¢)
Q Q

(016, &) yrs + J divie®@wv) - &dx = —J D(¢p,6)VNs(p,06) : VEdx

Q Q (3.41d)

— J Ss(@,0,p) - Edx + J Sr(g,0) - £dS,
Q r

holds almost everywhere on (0,T) for all test functions € L*(Q;R%), ¢,0 ¢
H'(Q;RL), and &€ € Wh*(Q; RM). Moreover, the following conditions are fulfilled

div(v) = S, (o, 6) a.e. in Q, (3.41e)
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Qo = 0o a.e. in Q, (3.411)

(6],_p @) yys = (60, D)yyrs  for all ® € WH(Q; RM). (3.41g)

The sense in which weak solutions to (MCHB) convergence to a weak solution of
(MCHD) is specified by the following theorem.

Theorem 3.7 (“Darcy limit” and existence of a weak solution to (MCHD)). Suppose that
A1-A9 are fulfilled, and let ¢, € H'(Q;R") and oy € L*(Q;RM) be arbitrary initial
data. Furthermore, let {n,},cn and {in},cn be sequences of viscosity functions such that
for each fixed n € N, n,, and A, are compatible with A3. We further assume that

11allcy ) — 05 1 7nllc,m) — 0, as n— oo, (3.42)

For any n €N, let (@, u,, 64, Vn,py) denote the weak solution of the multiphase Cahn-
Hilliard-Brinkman system (1.1) constructed in Theorem 3.5 associated with the viscosities 1,
and Ay,

Then, there exists a quintuplet (¢, p, 6, v,p) such that for all s € [0,1),

¢, — @  weakly-* in L°(0,T; H"),
weakly in Wb3(0, T; (HY)) N L*(0, T; H?), a.e. in Q,
and strongly in C([0, T]; H*) N L*(0, T; H*™),
@,y — |y strongly in C([0,T);L}), and a.e. on Z,
6, — 6  weakly-* in L(0,T;L%),
weakly in W"(0, T; (Wh*)")nL*(0, T; H'), ae.in Q,
and strongly in C([0, T]; (W"*)') N L*(0, T; HY),
6,|p — o|p  weakly in L*(0, T;L}), strongly in L*(0,T;L}), and a.e. on %,
B, — p  weakly in L*(0, T; H'),
v, —v  weakly in L*(0, T; L),
pn—p  weakly in L3(0,T;L?),
div(p, ®v,) —t  weakly in I5(0, T; (H"Y) N L3(0, T; 1),
div(e, ® v,) — 9  weakly in L'(0,T;L"),

as n — 0o, along a nonrelabeled subsequence.
Moreover, the limit (@, p,6,v,p) is a weak solution to the multiphase Cahn-Hilliard-
Darcy system (1.1) in the sense of Definition 3.6. In addition, this solution satisfies

@ € (0, T;H’) N C([0, T, H'),  y(p) € L*(0, T;L*) N L*(0, T; L°). (3.44)

Comment. We point out that for any n € N, the choice of the corresponding weak solu-

tion to (MCHB) is explicit, since we are choosing exactly the corresponding weak solution

that was constructed in Theorem 3.5. This means that even though the weak solutions to

(MCHB) might not be unique, we do not require the axiom of choice for our approach.
The proof of Theorem 3.7 is presented in Section 5.
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4. Existence of weak solutions to the (MCHB) system

This section is devoted to the construction of a weak solution to the multiphase
Cahn-Hilliard-Brinkman system (MCHB) in the sense of Definition 3.4.

Proof of Theorem 3.5. To construct a weak solution, we discretize the weak formulation
(3.37a)-(3.37d) via a Faedo-Galerkin scheme. Then, we derive suitable a priori estimates
for the discrete approximate solutions that are independent of the dimension of the
finite-dimensional subspace. This allows us to show that the sequence of approximate
solutions converges to a weak solution of the Brinkman system (1.1) in the sense speci-
fied by Definition 3.4.

In the whole proof, the letter C denotes a generic positive constant that may depend
only on the initial data and the constants introduced in Section 3.3 (including the final
time T), except for 7, as this constant will play a role in the “Darcy limit” (see
Theorem 3.7). The proof is split into several steps.

Step 1: The Faedo-Galerkin scheme. The idea of our Faedo-Galerkin scheme is to spa-
tially approximate the functions ¢, g and ¢ by functions from suitable finite-dimen-
sional subspaces.

Therefore, we consider the scalar eigenvalue problem for the Laplace operator with
homogeneous Neumann boundary conditions:

—Aw=Aw inQ, Ow=0 onl. (4.1)

It is well known, that there exists a sequence {(/; w;)},oy of eigenvalues /; and corre-
sponding eigenfunctions w;. We further know that all eigenvalues are nonnegative, and
can be sorted such that they form a nondecreasing sequence {4;},.y with 4; — oo as

i — oo. Furthermore, the eigenfunctions can be chosen such that ||w;||,. =1 for all i €
N. In particular, for the first eigenfunction, we choose w; = |Q|_1/ ?. As the domain Q
is smooth, elliptic regularity theory implies that w; € C*(Q) for all i € N. Moreover,
the eigenfunctions are orthogonal with respect to the inner product of L?(Q) and thus,
they form an orthonormal Schauder basis of L?(Q). In addition, the family {w;},.y is
also a Schauder basis of H3(Q).

We now define
W(i—1)ksj i= wje; for all i€ {1,..,L}, jEN,
Zi_1ksj i= wie; for all i€ {1,...M}, jeN
where e; stands for the i-th unit vector in R* or RM, respectively. It is straightforward
to check that the family {w,,},y is an orthonormal Schauder basis of L?(Q; R"), and
also a Schauder basis of H2(Q;R"). Similarly, the family {z,},,y is an orthonormal

Schauder basis of L?(Q;RM), and also a Schauder basis of H2(Q; RM). For any k € N,
we introduce the finite dimensional subspaces

vees

Zic = span {2y hior, aojr, k= SPan {21, ziar} C HU(Q:RM),
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and we write Py, and Pz, to denote the L*-orthogonal projection onto Wy and Z,
respectively.
We now make the ansatz

kL kM

kL
op(x,t) = Zaf(t)w,-(x), wi(x, 1) == be(t)wi(x), or(x,t) == Zcf(t)zi(x),

i=1 i=1

(4.2)

where the coefficients af, bf.‘, ie€{l,...kL}, and cf, i€{l,...,kM}, are assumed to be
continuously differentiable functions that are still to be determined.

At every time t € [0, T] in which the expressions in (4.2) are declared, we further
introduce the functions (vi(t),pk(t)) € H?> x H' as the unique strong solution of the
system

—div(T(y (1), ve(£), pi(1))) + v¥i(t) = (Vo (1)) i (1) + (Vo (1)) "No(@(t), 0k(t))  in Q,

(4.3a)

div(n(6)) = (04 (1), (1)) in 0,

(4.3b)

T (i (t), vi(t), p(t))n = 0 onT.
(4.3¢)

As the right-hand sides of (4.3a) and (4.3b) belong to L*(Q;R?) and H'(Q), respect-
ively, the existence and the uniqueness of the solution (vk(t),px(t)) € H* x H' follows
from a fundamental result on Stokes operators with variable viscosity established in [76]
that can also be found in [48, Lem. 1.5].

Moreover, we use (4.3b) and the chain rule to derive the identities

div(p(t) ® vi(t)) = Ver (1) vi(t) + @() Su(@e(t), 0(1)) in @, (4.4)
div(ek(t) @ w(t)) = Vor(t) vi(t) + ok (t) Sy (@i (1), 6%(t)) in Q, (4.5)

for all t € [0, T] in which the expressions in (4.2) are declared.

The next goal is to determine the continuously differentiable coefficients aé‘, bf.‘, ie

{1,..,kL}, and ¢, i € {1,...,kM}, such that the discretized weak formulation

J T(@p Vio Pi) - Vi + vvg - dx = J (Vor) w1+ (Vo) 'Ne(pp01) - ndx,  (4.62)
Q Q

Oy C>H1 + LdiV(‘Pk @) - {dx = _JQ(C((PI(’ o)V : V{+ Sqo((Pk, o 1) - §dx,

(4.6b)
J M- 0dx = J 7eV @y VO + 767 W, () - 0 + Ny (@, 0x) - 0dx, (4.6¢)
Q Q
(00K, &) +J div(ex @ ) - Edx = —J D(¢y, 6k) VNG (@), 0%) = VEdx
Q Q (4.6d)

- J So(@p 01 ) - Edx + J Sr(@ 0x) - €4S,
Q I
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is satisfied for all test functions n € H' (Q;Rd), ,0 € Wy, and & € Zi. Note that we
only need to detect a¥, b, i € {1,...,kL} and ¢, i € {1,..,kM}, such that the equations
(4.6b)-(4.6d) are fulfilled. Then (4.6a) holds automatically due to the construction of vy
and pi. Of course, also the initial conditions have to be approximated. We thus demand
that

(pk(O) = Pwk((p0> S Wk, O'k(()) = ng(ao) S Zk in Q. (47)

In the following, we write ak = (a’l‘, ...,aﬁL), b= (b’f, ...,bﬁL), and ¢f ;= (c’f, ...,cﬁM) to
denote the coefficient vectors. Plugging the ansatz (4.2) into the discrete formulations
(4.6b)-(4.6d), and testing with wy, ..., wi and zy, ..., Zgy, respectively, we conclude that

the vector (a¥,b¥ c*)" needs to satisfy a system of k(L + M) nonlinear ordinary differ-
ential equations and kL algebraic equations. By means of the vector-valued algebraic

equation resulting from (4.6c), we can replace the variable b* appearing in the right-
hand side of the vector-valued ODEs resulting from (4.6b) and (4.6d) by an expression

depending only on a* and ¢* to eventually obtain a closed system of ODEs for (aF, ck)T.
In fact, notice that from (4.7) we naturally obtain the initial conditions

[*1:(0) = af(0) = (@4(0), Wi) . = (95, Wi)» i€ {1,.. KL}, (4.8)
[c1:(0) = ¢5(0) = (6(0). )2 = (60. 2)) 2 i € {1,... kM}. (4.9)

In particular, this entails that

kL

Z [ak],‘(O) w;

i=1

kM

Z [Ck]i(()) Z;

i=1

10(0) | = < ll@ollg>  llox(0)l2 = < lloofl12-

H' I’

Recalling the assumptions A2-A8, we notice that the right-hand side of the ODE system
depends continuously on the unknown variables (ak,ck)T. Hence, the Cauchy-Peano
theorem implies the existence of at least one local solution (a¥,c¥)" : [0, T;) N[0, T] —
RFEFM) wyith T; > 0. Without loss of generality, we assume that T; < T and that
(ak, ck)T is the right-maximal solution of the ODE system mentioned above, that is, T}
is chosen as large as possible.

We can now reconstruct b* by means of the vector-valued algebraic equation as a
function (bk)T |
we obtain functions

0,T;) — R, Consequently, by (4.2) and the construction of (V> Pk)»

Pl € cl([o, T?): COO(Q;RL)), o1 € cl([o, T;;);cw(Q;RM)),

(4.10)
wec (o @RY)),  peec (0 T):HQ),

which satisfy the discretized weak formulation (4.6) on the time interval [0, T}).

In Step 3, we will see that the solution (a* c*)" of the ODE system mentioned above
can actually be extended onto the whole time interval [0, T]. Then the functions ¢y, ;.
6y, Vi, and py given by (4.10) satisfy the discretized weak formulation (4.6) not only on
[0, T;) but on the whole time interval [0, T].
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Step 2: A priori estimates. Now, we intend to establish a priori estimates to bound our
approximate solution (¢, fy, 6k, Vi, px) uniformly with respect to the index k in suitable
norms. We claim that there exist constants Cap, C;p > 0 such that, for all k € N and all
T, < T;: ,

Pkl (o, TsH" )2 (0, T H?)

okl (o )z o, ey 100 )

2
+ ||ﬂk||Lz(0,Tk;H1) + ||VkHL2<0)Tk;L2> + H n(ex) Dvi + 1ol o5 0, 7.12)

12(0, TysL?)
+ H\Pw(‘/’k)nﬁ(o, ) N2 (0, TiL) + [[VNG (01, "k)HLZ(o, TuL?)
V(@ @ Vi)l o (o, o) + NIV (0k @ Vi)l (0,71

< Cap,

(4.11)

and

@il o, 7y + okl wrano, rryy + 1Villi2 o, sy

. . _ (4.12)
+ [|div(e ® vk)||L2(0, Tal¥?) T [[div(ex @ Vk)”Ll(o, L) < Chp(1+n5").

We point out that the constants C4p and C), depend only on the initial data and the
constants introduced in Section 3.3 except for #o. In particular, C4p and C, are thus
independent of k and Tj.

In the following proof of these estimates, we omit the subscript k to provide a cleaner
presentation. In particular, with some abuse of notation, we will also just write T
instead of T;.

Step 2.1: Energy estimate. To handle both cases A8.1 and A8.2 simultaneously, we intro-
duce constants o and f in the following way:

{ o B:=0, if A8.1 holds,
o

]-’
0, p:=1 if A8.2 holds.
For every t € [0, T], we choose u(t) as a strong solution to the following problem
div(u(t)) = S,(¢(t), (1)) in Q,
u(t) = ﬁ (JoSv(@(t),a(t))dx)n=:r  on T,

whose solvability is a direct consequence of Lemma 3.2 with f = S,(¢(t),a(t)). This
lemma further implies u € C'([0, T]; W) for all q € (1,00) as well as the estimate

[u(t)][wa < ClISu(e(t).0(1))]1 < C. (4.14)
Notice that condition (3.2) in Lemma 3.2 is fulfilled as it holds that

Jrr ‘ndS— ﬁ <JQSV((p(t),a(t)) dx) Ln ‘ndS = st((p(t),a(t)) dx.

(4.13)

We now recall from Assumption A4 that

Ny(p,6) = 3,6 —Bp —b a.e. in Qx (0,T).
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Since @(t) € W for all t € [0, T], it is straightforward to check that Be(t) € Zj for all
t € [0, T]. Consequently, it holds that N, (¢(t),6(t)) € Z; for all t € [0, T].

Testing (4.6a) by v — u, (4.6b) by u, (4.6¢c) by —0:¢, (4.6d) by Ns(¢,6), adding the
resulting equalities, and using the decompositions (3.21), (4.4) and (4.5), we infer the
discrete energy identity

d
§E0.0)+ | 21(0) DV + oo ax
Q

+ | C(¢,6)Vu: Vu+D(¢,6)VNs(9,0) : VN4 (¢,0)dx + J Ky,lo]* ds
Q r

= JQA«/)(‘P’ 6)-1u—0,(p,0)u-n—S4(¢,0,n) - Ny(¢,0) dx
- Q[(th)u + @Sy(¢,0)] - n+ [(Vo)u + 68,(, 6)] - Ns (¢, 6) dx

+ | K(Ar(@,06) -Ng(p,6) + 6 - Gs(p,06)) dS + J 21(@)Dv : Du+vv - udx
Jr Q

(4.15)

on [0, T], where the energy E is given by (1.5). We point out that div(v —u) =0 is
essential in the derivation of (4.15).

Using the parameter o introduced in (4.13) and recalling the condition (3.32) in
A8.1, we derive the estimate

d
4 E o) +J 201() DV +v|v|2dx+j Ol dx
+ J C(¢p,6)Vu: Vu+D(9,6)VNys(9,0) : VN4 (@,06)dx + J Ky,|o)* dS
Q r

< 'JQA¢(¢’ o) - pdx

+(1—a)

[ 00000 u| + | Sul0.00 Nal0.0) 0

+

[ (Vo) osi(0. 01 udX' ¥ UQ[(Vc)u + 65,(0,6)] - No(9,6) dx

+

[ K(Ar(0.0) - Nolp.0) + 0 Golr0) ds1 T

J 21(¢)Dv : Du+vv - udx‘.
Q

(4.16)
Using Young’s and Holder’s inequalities, and (4.14) with g=2, we infer that

< | Vit o

To estimate the boundary integral, we employ the bounds on G, and N, demanded in
A4, as well as the trace theorem to infer that

2 v )
LS +C on 0T @17)

J 2n(@)Dv : Du+ vv - udx
Q

Ky
2" Hrfllizr +C(1+ o) (4.18)

[ K(Ar(p.0) Nelp.) - Galp.0) ds] <

on [0, T]. Having this bound at our disposal, we next estimate the integrals on the
right-hand side of (4.16) that depend on u. Recalling the decomposition (3.21) for S,
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presented in A5, we use Holder’s and Young’s inequalities along with (3.24) to infer
that

[ Avto.0) ns] 412

J 0p(@,0)p Ildx’
Q (4.19)

1 2 2 2
< gﬁ”ﬂ”y + C([lellp + [lol + 1)

Proceeding similarly and using the decomposition (3.22) from A5 as well as the esti-
mates (3.15) and (3.25), we further deduce that

1
< Bllullz: + Clllollz: + llallz: +1) on [0,7].  (4.20)

J Ss(@,0, 1) - Ns(9,0) dx
Q

Since (4.14) holds for ¢ =d+1, and W"41(Q;RY) is continuously embedded in
Cy(Q: RY), we know that

uc C'([0,T]; G(RY)  with [u(t)llc, < C for all t € [0,T]. (4.21)

Hence, using A4 and A6, as well as Young’s and Holder’s inequalities, we infer that

1
|, (Vo s 05,000 wax| < Bl + Cllplia: (122)

Recalling A4, we use the chain rule to derive the identity
V6 = (Nyo(0.6)) " (VN4 (0, 6) + Ggp(0,6)Vep) in Q x (0,T). (4.23)

According to (3.17) in A4, the operator norm of the matrix (Nyq(,6))”" is bounded
by x,!. We now use (3.13) from A4 to bound G, (¢,0), which leads to the estimate

IVellz < %, (IVNe(9.0)ll2 + Dal|Vellz) on [0, T]. (4.24)

We can thus use A4, A6 and (4.21) along with Young’s inequality to conclude that

Dyy?
JQ[(VG)“ + 6Sv(¢,6)] - No(¢,06) dx| < % Vel + C(IINs(¢.0)|3: + [lo]1f2)

Dy
< [VNG|7: + C(1 + [|ol3 + llo]72)
(4.25)

on the interval [0, T].

If A8.2 holds (i.e., «=0 and f=1), we still have to derive an estimate for the
L*-norm of u since it cannot be absorbed by the left-hand side. We test (3.37¢) with g,
and we use (3.15) and Young’s inequality to infer that

i < Col|Valz: + C(1+ ||l@llin + ||o]32) on [0,T] if A8.2 holds. (4.26)

We now combine the inequalities (4.17)-(4.20), (4.22), (4.25) and (4.26) to estimate the
right-hand side of the discrete energy identity (4.16). In the resulting inequality, we
observe that several terms on the right-hand side can be absorbed by the left-hand side.
Recalling the definition of the energy E and integrating with respect to time, we eventu-
ally obtain for all ¢ € [0, T7,
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—1 yé 2, Xe 2
RE Flo(t) + S [Vo)l" + T la(t)]” - Glo(t),a(1)) dx

+ j V() Dv(s)

T, C D
[ ) + LI + 2 VN0 s

Ky,
2

v
L+ V)l + =2 llo(s)1z; ds

2
L

(4.27)

t
<cr+ cL oI + ()] ds.

We next use the inequality (3.11) from A4 along with Young’s inequality to derive the
estimate

JQG((p(t), o(t) dx' < L% o(O)] + 2Cedla (O + Co (5 tot 1) dx

for all t€[0,T] and all 6 > 0. Choosing ¢ = x,/(8Cg), using the growth condition
(3.31) from A8, and recalling A9, we infer that

[ cto.amax] < | 20 + L loPar+c

o

< L%\P«p(t» + L2160 dx+C

for all t € [0, T]. Invoking the growth condition (3.31) once more, we find that for all
t€[0,T],

VA ¥, e 2 2
min{ 22 e 2 lo(0)3 + 1))

< | 5o + H 1900 + % lo(0) - Glo(t). o) dx.
Q

Using this estimate to bound the left-hand side in (4.27) from below, we finally con-
clude that

t
lp(0)l[7: + la(e)ll7> < €+ CL lp(s)I[7: + lla(s)l1z2 ds (4.28)

for all t € [0, T]. Invoking Gronwall’s lemma, we thus obtain the uniform estimate
2 2
||‘P||L°c(o,T;H1) + ||°'HL°<(0,T;LZ) <C (4.29)

Using this inequality to bound the right-hand side of (4.27), invoking (4.24), and add-
itionally using (4.26) if A8.2 holds, we infer that

2
||V||12,2(0,T;L2) <G H V(@) Dv 0, T12) <C, (4.30)

2 2 2 2
”"HLZ(O,T;Hl) + ||°'HL2(0, T;I%) + ”l‘”LZ(O,T;H‘) + | VNG (. O')HLZ(O, T;L?) <C (4.31)

Using the lower bound on # from A3 as well as Korn’s inequality (3.3), we directly con-
clude that
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H"HIZ,Z(O,T;HI) < C(1+ ’7(;1)- (4.32)

Moreover, applying a trace estimate presented in [73, Thm. I1.4.1] (with the parameters
therein being chosen as r = g =2,m = 1,n = d, A = 0), we infer that

loll; < C(llolly + llall10ll}?) on [0,7], (433)
and in combination with (4.30), this leads to the uniform bound

||6HL4(())T;L%_) <C. (4.34)

Step 2.2: An estimate for the pressure. We next want to derive a uniform estimate on the
pressure p. To this end, we rewrite (3.37a) as

J p divpdx = J (2n(@)DV + A(9)Sy(p,0)I) : Vipdx
Q Q (4.35)

+ JQ (VV — (Vo) 'n— (VO')TNa(‘P’ 0')) -ndx

on [0, T] for every § € H'(Q;R?). Then, by invoking Lemma 3.2, we infer the existence
of a function q € C([0, T]; H') such that for all t € [0, T], q(t) is a strong solution to
the system

div( t)) = p(t) in Q,
1 (Jop(t)dx)n on T

We point out that the complementary condition (3.2) is fulfilled as

L()MS|HOp®@N?1M&{J@M for all £ € [0, 7).

In particular, according to Lemma 3.2, we have the estimate

lqllg < Cllpll2 on [0, T]. (4.36)

q =

Then, we choose n = q in (4.35) and, invoking A3, A4 and A6, using the uniform esti-
mates (4.29), (4.30), (4.36) as well as Holder’s and Young’s inequalities, we derive the
estimate

Ipllz: < C(II\/'?((P)DVHiz + vz + 1Sy (9. 0) I

(4.37)
+ Vol Nl + Vol No(p.0) 3 ) < C
on [0, T]. Recalling A4 and the uniform estimate (4.29), we notice that
HNU(‘P’G)HLOC(O,T;LZ) <C
From the Gagliardo-Nirenberg inequality (3.4), we thus deduce the estimate
T
IN.0) 00 < C || INalip.0) [ [No(. ) .

< CINo(9.6)lI1 (0, 7.2) INe (0. 0) [ 120, a1y < C-
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Combining (4.37) and (4.38), we eventually conclude the uniform bound

4/3
||p||L4//3 0, TLZ)

4/3 4/3 4/3 4/3 4/3 4/3
j (/@I + IV + 1902 Nkl + Vel INa (g o)1 + 1) de
4/3 4/3 4/3 4/3
(II\/_ DY gy I 1y 1901 oy 12, 1

4/3 4/3
; ||v«r||L2(O,T;Lz)||N @)y )
<C.
(4.39)

Step 2.3: Higher regularity for the phase-field. To establish higher order uniform a priori
estimates on ¢, we test (4.6c) with —A¢ and integrate the resulting equation with
respect to time. This is actually allowed since the basis functions w;, i =1,...,kL are
contructed from eigenfunctions of the eigenvalue problem (4.1) and thus, —Ae(t) € Wy
for all ¢ € [0, T]. Next, we integrate the resulting equation with respect to time and after
further integrating by parts, we obtain

T T
ysj |Ag| dt + 96! j jﬂwg},},(mw Ve d(x1)
0 0

= | | B0+ W (0) - Mg+ Nyl o) - Ap ()

Note that the second integral on the left-hand side is nonnegative as ‘P%((p) is a posi-

tive definite matrix due to the convexity of ¥!). Applying Young’s inequality on the
right-hand side, using (3.15) from A4, and recalling that ‘I’sz) is Lipschitz continuous

(see A8), we derive the estimate
/8 ! 2 2 2
||A<P||Lz dt < C) 1+ [kl + el + lollz:) df < C.
Invoking elliptic regularity theory and the uniform estimates (4.29) and (4.31), we con-
clude that
loll20, 7.2 < CUIAP| 120, 7:22) + 10l 120, 7:22)) < C. (4.40)

We next test (4.6c) with A’p and integrate the resulting equation with respect to time.
Arguing similarly as above, A’ is indeed an admissible test function due to the con-
struction of the basis functions w;, i =1,...,kL. After integrating by parts, using the
chain rule, and recalling that Ny, = —Gg¢, Noy = —Gg, due to A4, we have

T T
vSJ IVA@]: dt = J JQ(W : VAp —pe Wou (@) Ve : VA
0 0
— Gyy(0,06)Ve : VAQ — G4y (¢, 06)Vo : VAg) dx dt (4.41)
< C(”v”HLZ(O,T;LZ) + ||T¢¢(¢)||L2(0,T;L°°)||V(p||L°°(O,T;L2)
+ ||V(PHL2(O, T.12) T ”V"”LZ(O,T;LZ))||VA‘P||L2(0,T;L2)-
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If A8.1 holds, we use Agmon’s inequality (3.5) to obtain the bound

T T
1% (0) |20, 1) < C+ CL lolltxdt < C+ cjo ol llolZ: dt

<C+ C”#’”iw(o,T;Hl)||‘P||i2(o,T;H2) <C

On the other hand, if A8.2 holds, the bound [|'¥yy(¢)||12(, 1.1~) < C is trivially satisfied.
Applying Young’s inequality on the right-hand side of (4.41), we thus infer that

194018 g 12y < C(MME o ram + 191 o) + 101 ) ) < -

Using elliptic regularity theory, as well as the uniform estimates (4.29) and (4.31), we
eventually obtain

el 20, 7)< CUNVAQ 20, 1:12) + VO 120, 7:22)) < C- (4.42)

Step 2.4: Estimates for the gradient of the potential. Using interpolation (Lemma 3.1)
and Sobolev’s embedding theorem, we obtain the continuous embedding

L0, T; H'(Q)) N L*(0, T; H*(Q)) < L*(0, T; L¥*5(Q)) (4.43)
for all k € (8,00). This entails that
¢ € L*°(0, T; L'°(Q)) N L'°(0, T; L (Q)).

Recalling A8, for general exponents g and r still to be chosen, we derive the estimate

T T
- -1
1o (@)l 0.10) < cjo (I Tl 11+ 1)t < cjo (llol?e=) +1) de.

Choosing (g,7) = (4,2) and (g,7) = (2,6), respectively, and recalling that p <4, we
directly conclude that

o (@)l 50, 1:2)n 120, 7:29) < C- (4.44)

Step 2.5: Estimates for the convection terms. We now use the estimates established above
to derive uniform bounds on the convection terms div(¢ ® v) and div(e @ v).

Recalling the decompositions (4.4) and (4.5), and using A6, Lemma 3.1, Holder’s
inequality and the continuous embedding H' < L°, we infer the uniform bounds

4/3 4/3 4/3 4/3
ldivie @ )13 o) < j IVl IVl + Nl % de
2/3 2/3 4/3 4/3
< CJO lol3 Il 19155 + el 25 dt (4.45)
2/3 2/3 4/3
c(nrpnm S N 17 oA ) <c
T
Idiv(e @ )|y, 70y < CL IVoll2[¥llz + ol dt < C, (4.46)
T
1div(9 © ¥)[72(0, 712 j IV@ll7:[[vlis + ll@l3= de < C(1+n5"), (4.47)



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS @ 31

T

ldiv(e © ¥)llyo rase) < CL IVl wlle + llolloe de < CO+ g (4.48)

Step 2.6: Estimates for the time derivatives. Let { € L*(0, T; H'(Q;RY)), & e L*(0, T;
H'(Q; RM)) be arbitrary, and let P{ and P& denote the projected functions given by

Pg(x,t) = [Pw, (£(1)](x), PE&(x,t) = [Pz (&(1))](x) for almost all (x,t) € Q x (0, T). (4.49)
We thus have the estimates
IPE@) g < N[> IPE@) g < 1) | (4.50)

for almost all t € [0, T]. Moreover, since the families {w;},.y and {z;},. are orthonor-
mal bases of L?(Q; R") and L?(Q; RM), respectively, we infer that

(0. O)p2 = (0. PC) 2, (010, &)z = (04, PE)2 on [0, T].

Now we test (4.6b) with P{ and we integrate with respect to time from 0 to T. Using
A2, A5, A6, the uniform estimates (4.29), (4.31) and (4.47), and the continuous embed-

ding L — (H"), we derive the estimate

(0. C)LZ(O, T;H1)| =

T
J (9. PO) dt‘

0

T
< CJO 1div(@ @ v)[| gy 1Pl + [Vl 2 [PEll 2 + 1S (. 0. ) 12 [P 2

1

T E
< CllEll 20, 7:81) (JO ldiv(e @ v)l722 + [kl + lollz: + llallz: + 1df>

1.4
< C(1+n, 1)2||C||L2(0, T:H')"
Hence, taking the supremum over all { € L*(0, T; H') with [|{[| ;2 7.5y < 1, we obtain
the uniform bound
1.4
10e0ll 20, 7o aryy < C(1+ 11" )2 (4.51)
To estimate the time derivative of ¢ we argue similarly. Namely, we test (4.6d) with P&
and integrate with respect to time from 0 to T. Using A2, A5, A6, the uniform estimates
(4.29), (4.31) and (4.47), we obtain

T
(0. oy =, @ PO 0

T
< CJ (Idiv(e @ v)[l gy P&l + [[VNs (@, 6) [ 2 [[PE]l 2

0
+[1Ss(@. 0. 0) [ 2 [PE]l 2 + [1Sr(. 0) [ 12 1€l ) dt
T

< Cllélls o, ar (J ldivio @ W)llLy, + VN (p.0)]

>

1

#se(0.0. 0} + I8 (0.0l o)

<C(1+ ﬂal)§|‘€||L4(o,T;H1)-
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Taking the supremum over all & € L*(0, T; H') with ||&|| Lo, . < 1 we eventually get

106|420, 7-arryy < C(L+ 157 )2 (4.52)

Step 3: Extension onto the whole time interval [0, T]. As the constant C4p is inde-
pendent of the time Ty, we will use the a priori estimate (4.11) to extend the approxi-
mate solution (@, py, 6k, Vi, px) onto the whole time interval [0, T]. To see this, we
recall from Step 1 that the coefficients (a¥, c¥) are determined as a solution of a nonlin-
ear ODE system. Using (4.2), we infer that for any Ty € [0, T), all t € [0, Ti], and all
i€{l,..,kL}, and j € {1,....,kM},

@ (0)] + 1O = [ (@(6). wi) | + | (0(8). 7)1

< k@)l <0, T2y + 16610, 722) < Cap-

This means that the solution (a*,c*)" is bounded on the time interval [0, T;) and hence, it
can be extended beyond T;. However, as (a¥, k)" was assumed to be a right-maximal
solution, this is a contradiction. We thus conclude that the solution (a¥,c¥)" actually exists
on the whole time interval [0, T]. As the coefficients b* can be reconstructed from (a,c*)"

via the vector-valued algebraic equation mentioned in Step 1, we further infer that b* also
exists on [0, T|. This directly implies that the functions ¢, u;, 6, vk and py exist on [0, T]
and satisfy the discretized weak formulation (4.6) on [0, T]. As the choice of Ty did not
play any role in the proof of the a priori estimates presented in Step 2, it is clear that the a
priori estimate (4.11) holds true with T; and T} being replaced by the final time T.

Step 4: Convergence to a weak solution. Exploiting the a priori estimates in Step 2,
and using Sobolev’s embedding theorem and interpolation (Lemma 3.1), we conclude
that there exists a quintuplet (¢, g, 6, v,p) such that the sequence of approximate solu-

tions {(@y. My 6k Vi Pi) ey satisfies
¢, — @ weakly in H'(0,T; (H")') N L*(0, T; H?),
weakly-* in L*(0, T; H'), a.e. in Q, (4.53a)
and strongly in C([0, T]; H*) N L*(0, T; H***) for all s € [0, 1),

ol — ol strongly in C([0, T];L}), and a.e. on I, (4.53b)

6r — 6 weakly in W"3(0, T; (H")) N L*(0, T; H'),
weakly-* in L*(0, T;L?), a.e. in Q (4.53¢)
and strongly in C([0, T]; (H")") N L*(0, T; H*) for all s € [0, 1),

oxlr — ol weakly in L*(0, T;L}), strongly in L*(0, T;L}),

(4.53d)

and a.e. on X,
u, — p weakly in L*(0, T; H'), (4.53€)
vk — v weakly in L*(0, T; H'), (4.53f)

px — p weakly in L3(0, T; L?), (4.53g)



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS @ 33

as k — oo, along a nonrelabeled subsequence. We point out that the strong convergen-
ces in (4.53a) and (4.53c) are a direct consequence of the Aubin-Lions-Simon lemma
(cf. [77, Theorem I1.5.16]). Then the strong convergences in (4.53b) and (4.53d) follow
from (4.53a) and (4.53c) by means of the trace theorem. In particular, this entails that
the limit (¢, p, 6, v, p) satisfies the regularity condition (3.36), and we further know that
¢ € L*(0, T; H*). Recalling the assumptions A2-A7, we infer from (4.53) the almost
everywhere convergence properties

C(@y, 6k) — C(o,0), D(¢y, 6x) — D(o,0) a.e. in Q, (4.54a)
n(ex) — n(e), o) — Ao) ae in Q (4.54b)
Ny (@1, 01) — Ny(0,0), Ns(¢,0x) — Ng(@,06) ae. in Q, (4.54c¢)
VNs (@i, 6x) — VNg(0,6), S,(¢,0r) — Sy(@,6) ae. in Q (4.54d)
Yo(or) — Yolo) a.e. in Q, (4.54e)
Sr(¢y, 61x) — Sr(e,0) a.e. on X, (4.54f)
Ay (@, 01) — Ay(0,0), 0y(@,01) — 0,(,6) ae. in Q, (4.54g)
As(@r,6k) — As(0,0), 0s(¢).01) — 05(p,6) ae. in Q, (4.54h)

after another subsequence extraction. From (4.54c), (4.54d) and the a priori estimate
(4.11), we further conclude that,

Yo (pr) — Yolo), weakly in L*(0, T; L*) N L*(0, T; L°), (4.55)

VN, (¢, 061) — VN (@,6) weakly in L*(0, T; L), (4.56)

as k — 0o, up to subsequence extraction. Using the decomposition (4.4), and the con-
vergences (4.53a), (4.53f), and (4.54d), it is straightforward to check that

div(p, ® v) — div(p @ v) weakly in L*(0, T; L) (4.57)

as k — co. Moreover, due to the a priori estimate (4.12), the Banach-Alaoglu theorem
implies that there exists a function 7 € L! (O, T; L%) such that

div(e; ® vi) — © weakly in L'(0, T; L?).

Let now &€ € C°(Q) be an arbitrary test function. Performing an integration by parts,
we obtain

J div(e, @ v) - Ed(x,t) = —J (6 @ vi) : VEd(x,t).

Q Q

Due to (4.53¢c) and (4.53f), we may pass to the limit on the right-hand side. This yields
J div(or @ ) - Ed(x, £) — _J (6®v): VE(x, 1)
Q Q

and after another integration by parts, we conclude that div(ex ® vx) — div(e @ v) as
k — oo in the sense of distributions. Because of uniqueness of the limit, we thus have
7 = div(e ® v) almost everywhere in Q and hence,
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div(ex ® v) — div(e ® v) weakly in L' (0,T:L%). (4.58)

Now, let 6 € C([0,T]) and 5 € H'(Q;RY) be arbitrary, and for any fixed k € N, let
i€{l,...kL}, and j € {1,..,kM} be arbitrary. We test the discretized weak formula-
tion (4.6) with on, ow; and 0z; and integrate with respect to time from 0 to T. This
yields

J T(@p vio Pi) : OV + vy - ond(x, t)
Q

= JQ(V(pk)Tuk -0+ (Vor) 'Ny(@p, 61) - ond(x, t), (4.59a)

T
J (Orpy . Wi) o dt + J div(e, @ vk) - ow; d(x, 1)
0 Q (4.59b)

= | €000 T 59w+ S, 01 - Gwid (),
Q

J - ow; d(x, 1 :J VeV @y 2 VWi + 76 Wy (0y) - SWi + No(po 1) - Sws d(x, 1),
Q Q

(4.59¢)
T
J (06, Zj) i o dt + J div(ex ® vi) - 0z d(x, t)
0 Q
= —J D(@y, 6k) VNG (@, 6%) : 0Vz;d(x, ) (4.59d)
Q

- J So (@1 01 1) - 027 d(x, 1) +J St (@, 0%) - 6z; dSdt.
Q =

Invoking the convergence properties (4.53) and (4.54), and using Lebesgue’s dominated
convergence theorem, we deduce that

n(9,)0Vy — n(@)dVy, M@)oV — A(@)5Vny in L*(Q),  (4.60a)
C(pw 0k)5VW; — C(,6)0Vwi;, D(e,061)5Vz; — D(,6)0Vz; in L*(Q),  (4.60b)
0, (0. 01) ow; — 0,(¢.6) oW, 0,(pr0k) 9zj — 0,(p.6) ' dz; in L*(Q), (4.60c)

as k — oc. To establish a similar convergence result for terms like [Ng(¢;. o%)];[0n]; for

all ie{l1,..,d} and je€ {1,..,M}, we intend to employ a generalized version of
Lebesgue’s dominated convergence theorem, see [78, Sec. 3.25]. To this end, for any i €
{1,..,d} and j € {1, .., M}, we first recall that

[Na(‘/’k’ Gk)]j[é"]i - [NU((p’a)]j[éﬂ]i ae in Q as k — oo,
|[N6((pk,ak)]j[5q]i\2 < Bf\,(|(pk|2 + |o'k|2 + 1)|511|2 =:g¢ ae. in Q for all ke N,

due to (4.54c) and A4. Using the convergences in (4.53a) and (4.53c), a straightforward
computation reveals that

g — g = BY(lo[* + o] + 1)lon* in L'(Q).
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Hence, we apply Lebesgue’s generalized convergence theorem to conclude that
[Na((l’k’ O-k)]j[(s”]i - [Na(‘l’»d)]j[é’l]i in LZ(Q) (4.61a)

as k — oo, for all i€ {1,..,d} and j€ {1,..,M}. Proceeding similarly, we further
obtain the following convergences:

Ny (@ 6%) - OW; — Ny(9,06) - ow; in L*(Q), (4.61b)
Ay (@i 6k) - Ow; — Ay(@,0) - ow; in L2(Q), (4.61¢)

As(@y, 0k) - 02 — As(@,06) - 0z;  in L*(Q), (4.61d)

Ar (@ 0x) - 0z; — Ar(@,6) - 0z; in L*(Z), (4.61e)

foralli e {1,..,kL} and j € {1,...,kM}.

Eventually, invoking the convergences (4.53), (4.55)-(4.58), (4.60) and (4.61), we may
pass to the limit in (4.59). As the test function ¢ and the indices i € {1,...,kL}, and j €
{1,..,kM} can be chosen arbitrarily, we conclude by means of a diagonal argument
that the quintuplet (¢, u, a,v,p) satisfies the weak formulation (3.37) for all test func-

tions 5 € H'(Q; Rd), { =wj, 0 =w;, £ = z; with i,j € N. Next, we recall that the fami-
lies {wi};cy and {z;};y are Schauder bases of H2(Q;R") and H2(Q; RM), respectively.
Since H2(Q;RY) is dense in H'(Q;R"), and H2(Q;RM) is dense in H!'(Q;RM), we
eventually conclude that the weak formulation (3.37) is actually satisfied for all test
functions n € H'(Q;R?), {,0 € H'(Q;RY) and & € H'(Q; RM). Moreover, the identities

div(v) = S,(p,6) ae. in Q,

?l_o = @ a.e. in Q,

(6],_y. D)y = (60, D)yp  for all ® € H'(Q;RM)

follow directly from the convergences stated in (4.53) and the uniqueness of the limit.

This proves that the quintuplet (¢, u, 6, v,p) is indeed a weak solution to the multiphase
Cahn-Hilliard-Brinkman system (1.1) in the sense of Definition 3.4.

Step 5: Further properties. We will now establish the remaining properties of the weak
solution constructed in Step 4.
Using the convergences (4.53) and the weak lower semicontinuity of the norms, we
infer from the a priori estimate (4.11) that
el 0, o ey + 1010, 72z 0.ty + 01150, 7212

+ ||.“HL2(0,T;H1) + ||V||L2(0,T;L2) + [Ivn(e) DV”LZ(O,T;LZ) + ||P||L4/3(o, T;L2)

+ ||\P¢((P)||L4(O, T2 (0, T:L8) T [ VNG (¢. ")”LZ(O, T;L%)

+ [|div(e ® V)||L4/3(o, T2y T [div(e ® ")HLI(O, roy < Cap.

(4.62)

In particular, this means that the second regularity in (3.38) is already established.
Furthermore, in Step 4 have already shown that

¢ € H'(0, T; (H") N L*(0, T; H*) C H' (0, T; H ) N L*(0, T; H?).
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Invoking a result from interpolation theory [79, Thm. 4.10.2] as well as Lemma 3.1, we
conclude that

=

pc c([o, T); (H' H) ,2> = ([0, T); HY)

which proves the first regularity in (3.38).

5. “Darcy limit” and existence of weak solutions to the (MCHD) system

This section is devoted to the construction of a weak solution to the multiphase Cahn-
Hilliard-Darcy system (1.1) in the sense of Definition 3.6. This is achieved by an asymptotic
technique, where the positive viscosity functions in the system (MCHB) are sent to zero.

Proof of Theorem 3.7. For every n € N, let n,, and 4, be viscosity functions as described
in Theorem 3.7, and let (¢,,#,, 6, Vs p,) denote a weak solution of the
Cahn-Hilliard-Brinkman system (1.1) obtained from Theorem 3.5 with the choices n =
n, and 4 = 4,. We point out that by this explicit choice, we do not require the axiom
of choice, even though the uniqueness of the weak solutions is unknown. We recall
that, owing to Theorem 3.5, the solutions (@,,, u,,, 64, V4, p,) satisfy the weak formulation
(3.37a)-(3.37d) (written for n = 5, and A = 4,) and exhibit the regularities

¢, € H'(0,T; (H')) nC([0, T|; H') N L*(0, T; H),

6, € WH(0,T; (H')) N C([o, T]; (H")') N L=(0, T; L*) N L*(0, T; H'),

@qlr € C([0, T, L}), o]y € L*(0, T; L), (5.1)
u, € L*(0,T;HY), wv,€L*0,T;H"), p,eLi0,T;L%),

div(p, ® v,) € L*(0, T; I2), div(e, ® v,) € L' (0, T; L7).

Since for any fixed n € N, the viscosities ,, and 4, are assumed to be compatible with
A3, there exist constants 0 < 1, , < 1, , and A, , > 0 such that (3.7) is fulfilled. In view
of (3.42), we assume (without loss of generality) that n, , = 4., =1 for all n € N and
we further fix

’70,11 = il’lfL My (P)
peR

To investigate the convergence of the sequence {(¢,. i, 6. Vi.Pu)},cr> We first need to
derive suitable bounds that are uniform in n.

Step 1: Uniform estimates. In the following, the letter C denotes generic positive con-
stants that do not depend on n. They may still depend on the initial data and the other
constants from Section 3.3, except for 1, ,. We already know from Theorem 3.5 that
@nlli~ 0, 7.t )20, sy + N0l o, o2y iz 0, ety + 110l s, 1z
+lleallzo, ey + 1all 2o, 2y + 1V 1(@04) DValli2o, 72y + 1Pnll o, 7222)
+ ||T¢<¢n)||L4(O, T12)n12(0, ;L) T ||VN0'((pn’o.ﬂ)||L2(0, T;1%)
+ [|div(@, @ Vi)l (o, 7,2y + 1div(en @ vl o, 7.1y < C.

(5.2)
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We still have to derive additional uniform estimates for the time derivatives of ¢, and
6,. To this end, we recall the identities

div(e, @ v,) = (Ve,)v, + 0,5,(¢,,6,) ae. in Q, (5.3)
div(e, @ v,) = (Ve,)v, + 0,5.(9,,06,) ae. in Q. (5.4)
Let now { € L5(0, T; H') be an arbitrary test function. Using the continuous embedding

H> — L3 as well as Lemma 3.1, we obtain the estimate

T T
j Jgdivwn ® ) - Ld(x1) < cj (15l ¥z + 10l IEl s i

0 0

T
3/4 1/4
< CL ol a2 1wl + 10 l2) 50 de

3/4 1/4
< C(”(anLi(O,T;Hl)||(pn||L£(0)T;H3)HVWHLZ(O,T;Lz) + ||(Pn||L°‘(O,T;L2))||C||L3/3(O,T;H])

< CliEll s 0, a1y -

Taking the supremum over all { € L¥3(0, T; H') with [|{| 530 7.y < 1, we thus con-

clude the uniform estimate
[div(@, @ va) |50, ry(ay) < C- (5.5)

Now, by a comparison argument, we infer from (3.37b) (written for the functions with
index n) that

10e@ I 555 0, 7011y < C- (5.6)
Since L! is continuously embedded in (W"*)', we infer from (5.2) that
||diV(O'n & vn)||L1(0’ T;(W1’4)’) S C. (57)

By means of a comparison argument, we eventually conclude from (3.37d) (written for
the functions with index n) that

||3t°'n||L1(o, Ty (whiy) S C. (5.8)

Combining (5.2) with (5.5)-(5.8), we eventually obtain the uniform estimate
| W/5(0, T3(H') )L (0, T:H')NL2(0, T:H) T &l (0, T;(Wh4))nL= (0, T;L?)NL2(0, T;H")
Fllonllso, a2y + letall 2o, ey + vall 20, 7y + v/ na(,) Dyl 20, 1:12)

F lnllpso, 72y + 1o @)l a0, 1ia2)nr20, 7i2s) + VNG (@1 60) |2 0, 7212

+ [|div(e, ® v”)”L8/5(0, Ty (H'Y)nL5 (0, T;L2) [div(en @ va)ll10, 721y < C-

(5.9)

Step 2: Passing to the limit. The next step is to pass to the limit as # — co. From the
uniform estimate (5.9), we infer the existence of a quintuplet (¢,a, u,v,p) as well as
limits t and 9 such that for all s € [0,1),

¢, — ¢ weakly-* in L*(0, T;H'),
weakly in W"5(0, T; (H")") N L*(0, T; H®), a.e. in Q, (5.10a)
and strongly in C([0, T]; H) N L*(0, T; H**),
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@,lr — @| strongly in C([0, T};L{), and a.e. on X, (5.10b)
6, — 6 weakly-" in L*(0, T; Lz),
weakly in Wh1(0, T; (Wh*)') N L*(0, T; H'), a.e. in Q, (5.10¢)
and strongly in C([0, T]; (W>*)") N L*(0, T; H*),

6, — o|r weakly in L*(0, T;L}), strongly in L*(0,T;L}), and a.e. on X,

(5.10d)

p, — p weakly in L*(0, T; H'), (5.10e)

v, — v weakly in L*(0, T; L%,), (5.10f)

pn— p weakly in L3(0, T; L?), (5.10g)

div(e, ®v,) — t weakly in L3(0, T; (H')) N L3(0, T; L?), (5.10h)
div(e, @ v,) — 9 weakly in L'(0, T;L"), (5.10i)
n,(@,) — 0 strongly in L*(Q), and a.e. in Q, (5.109)
Jn(@,) — 0 strongly in L*(Q), and a.e. in Q, (5.10k)

as n — oo, along a non-relabeled subsequence. The strong convergences in (5.10a) and
(5.10c) are a direct consequence of the Aubin-Lions-Simon lemma (see [77, Theorem
I1.5.16]), and the strong convergences in (5.10b) and (5.10d) are obtained through the
trace theorem. We further point out that the convergence v, — v in L*(0, T; L) (see
(5.10f)) already entails that

div(v,) — div(v) weakly in L*(0, T;L?) (5.11)

as n — o0o. Recalling the assumptions A2-A8, we use the above convergences to infer
that

Clp,.00) — Clo,0), D(¢,,61) — D(p,6)  ae in Q (5.12a)
Ny(9,,64) — Ny(9,0), No(¢,,6,) = No(@,6) ae in Q (5.12b)
VNo(¢,,64) = VNs(,6),  Sy(¢,,04) — Sy(@,0)  ae in Q (5.12¢)
Yo(e,) — Volo) ae in Q (5.12d)
Sr(¢,,6,) — Sr(o, o) a.e. onZx, (5.12e)
Ap(9,,6,) = Ay(@,0), 0,(¢,,06,) — 0,(p,6) ae. in Q (5.12f)
As(@,,61) — Ag(9,0), 0s(@,,61) — Os(@,0) ae. in Q (5.12g)

as n — oo, after extracting a subsequence. Now, using (5.12¢), (5.12d), the uniform esti-
mate (5.9), and the uniqueness of the limit, we further conclude that

Y, (0,) — ¥, () weakly in L*(0, T; L*) N L*(0, T; L®), (5.13)
VN4 (0,,6,) — VN4 (@,6) weakly in L*(0, T;L?) (5.14)

as n — oo, after another subsequence extraction.
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Let now &€ CX(0,T), n € H'(;RY), {,0 € H'(Q;RY), & € WHH(Q;RM) — L>(Q;
RM), and q € H'(Q) be arbitrary test functions. We now test the weak formulation
(3.37) (written for (¢,, #,, 61, vn, pn) and the viscosities #,, and 4,) with on, 6§, 560 and
o0&, and we integrate the resulting equations with respect to time from 0 to T. We fur-
ther multiply the identity (3.37e) (written for v,, ¢, and 6,) by dq and integrate the
resulting equation over Q. In summary, we obtain

0= J (21,(0,)DVy + 7n(, )div (v )L — puT) : 5V + v, - Sy d(x, )
Q

(5.15a)
B J (V(Pn)Tﬂn : 5” + (vo‘ﬂ)TNO'((Pwan) ' 5" d(x’ t)’
Q
T
0= J (O, ) 5dt+J div(e, ® v,) - 68 d(x, )
0 Q (5.15b)
+J C(9,,6,)Vu, : VL —Su(@,, 64, p,) - 68 d(x, 1),
Q
0= J —p, - 00dx + yeVe, : OVO + e Wy (p,) - 60d(x, t)
Q (5.15¢)
—l—J Ny(9,,06,) - 00d(x, 1),
Q
T
0= J (016, &)y 0dt + J div(e, @ v,) - 0&d(x, t)
0 Q
+J D(@,,6:)VN,(@,,62) : SVEd(x, 1) (5.15d)
Q
+J Se(@ 00, 1,) - 0&d(x, t) — J Sr(e,,6,) - 0£dSdt,
Q z
0= J div(v,) 0q — Sy(@,,06,) dgd(x,t). (5.15e)
Q

Our next goal is then to pass to the limit # — oo in this variational formulation.
Invoking the convergence properties (5.10) and (5.12), and using Lebesgue’s dominated
convergence theorem, A5-A7, we deduce that

C(,,6,)0V¢ — C(p,6)0V¢, D(@,,6,)0VE — D(@,6)0VE in L*(Q),  (5.16a)
0,(0,.6,) 00 — 0,(0.6) 30, 05(¢,.6,) 0 — 0,(p.6) 6¢ in L*(Q),  (5.16b)

as n — oo. Furthermore, proceeding as in Step 4 of the proof of Theorem 3.5, we use
Lebesgue’s generalized convergence theorem [78, Sec. 3.25] to conclude that

[No(@,.64)] [0n]; — [No(.0)];[0n]; in L*(Q), (5.17a)
N, (¢,,6,) - 60 — N,(p,0) - 60 in L*(Q), (5.17b)
Ap(@,64) - 0L — Ay(@,0) - 6 in L*(Q), (5.17¢)
Ao(@,00) - 0 — Ag(@,0) - 06 in I*(Q), (5.17d)
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Ar(o,,6,) - 6& — Ar(@,6) - 68 in L*(Z), (5.17e)

as n — oo, for all i € {1,...,d} and j € {1,..., M}. For most of the terms in (5.15), we
can simply use the convergences (5.10), (5.13), (5.14), (5.16) and (5.17) to pass to the
limit n — co. However, some of the terms require a closer investigation.

In the terms depending on the viscosity functions #, and 4,, we can pass to the limit
n — oo as follows:

j 20,(9,) DY, : 5V d(x, 1)
Q

3 5.18
< C V1@ DVl 20 10 10 (@) [ ) 191l o, 1 1 (5.18)

< C U)o Il — O
J 0 (,)div(v,)I : Vyd(x,t)
Q (5.19)
< Cll2n( @)l () [15v( @ 00) 120, 722 10| £ (10, 7 11| — O

Furthermore, we still need to recover the identities T = div(¢ ® v) and ¥ = div(e @ v)
almost everywhere in Q. To prove the latter identity, we first deduce from (5.10i) that

J div(a, @ v,) - 08, d(x,t) — j 9S8, d(x,t) for all & € W, (5.20)
Q Q

Let us now consider an arbitrary test function &, € C(Q; RM). Performing an integra-
tion by parts, we obtain

J div(e, @ v,) - 0&,d(x,t) = —J (6, @ v,) : OVE d(x,1).
Q Q

Due to (5.10c) and (5.10f), we may pass to the limit on the right-hand side by the
weak-strong convergence principle. After another integration by parts, we get

J div(e, @ v,) - 0&, d(x,t) — —J (6 @) :0VE d(x,t)
Q Q

= J div(e ® v) - 0&, d(x,t)
Q

as n— oo, for all & € CX(Q;RM). Since (5.20) holds true for all & =¢§ ¢
C®(Q; RM), we eventually have

J 9 - 68 d(x,t) = J div(e ® ) - 68, d(x, 1)
Q Q

for all & € C*(Q;RM), § € C([0,T]), which is enough to conclude that ¥ =
div(e ® v) almost everywhere in Q. In particular, this proves that

J div(e, ® v,) - 0&d(x,t) — J div(e @ v) - 0&d(x, t) (5.21)
Q Q

as n — oo. Proceeding similarly with the convection term associated with the phase-
field variable, we conclude that T = div(¢ ® v) almost everywhere in Q, and
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J div(ep, @ v,) - 8¢ d(x, £) — J divie ® ) - 5¢d(x, 1) (522)
Q Q

as n — 00. We can now use the convergences (5.10)-(5.14), (5.16)-(5.19), (5.21), and
(5.22), along with the identities T = div(¢ ® v) and ¢ = div(e ® v) a.e. in Q, to pass to
the limit #n — oo in the variational formulation (5.15). Since ¢ € C*([0, T]) was arbi-
trary, this proves that the quintuplet (@, u, 6, v, p) satisfies the equations

0= JQ —p div(y) + (vv — (Vo) u— (Vo) Ny(p,0)) - ydx, (5.23a)

0= (0. + jﬂ((vwv 4 ¢S,(p,0) - {) dx

(5.23b)
+ JQ(C((p, 6)Vu:V{—S,(p,0,p) - (dx,
0= J —p-0dx+7yeVe : VO +ye 'Wy(p) - 0+ Ny(o,0) - 0dx, (5.23¢)
Q
0= (0108 + | (Volv- &= 65,(p.0) £+ Dl.0) Nalp0) : Ve
Q (5.23d)

+j S.(g.0,10) e:dx—j Sr(p,0) - £4S
Q I

almost everywhere in (0, T), for all test functions € H'(Q;R?), {,0 € H'(Q;R}), € €
Wh4(Q; RM), as well as the identity

div(v) = S,(¢,06) a.e. in Q. (5.23e)
Testing (5.23a) with any function 1, € C*(Q; RY), we deduce that

j p div(yy) dx = j (v — (Vo) 1 — (Vo) Ny(,0)) - 1y .
Q Q

Since
T T
v = (Vo) 1= (Ve) No(0,0)l|L0 1102
< CH"HLZ(O,T;LZ) + ||V¢||L2(0,T;LZ)||ﬂ||L2(o,T;L6)
+ ClIVoll 20, .2) (1@l 120, 7226 + 161120, 7506) + 1)

<G

we conclude that Vp exists in the weak sense with
Vp=wvv— (Vo) u— (Vo) Ny(p,6) € L'(0,T;I?) a.e.in Q.

Plugging this identity into (5.23a) and integrating the resulting expression by parts, we
infer that

0— —j p(t) div(n) + Vp(t) - px = —J () - nds (5.24)
Q r

for almost all ¢ € (0, T) and all § € H'. For any q € C}(I'), we have —gqn € H' and we
may thus choose # = —gn. We thus obtain
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0= J p(t) g n-ndS = J p(t) qdS (5.25)
r r

for all g € C}(T") and almost all ¢ € (0, T), which directly proves that p|x, =0 a.e. on X.
In summary, we have

p e L0, T;12) N L (0, T; Wy 3), (5.26)

and thus, all regularities in (3.40) are established. In particular, via integration by parts,
(5.23a) can be replaced by the equivalent formulation

0= L}Vp n+(wv— (Vo) n— (Vo')TN,,((p, 6)) - ndx. (5.27)

We thus conclude that the quintuplet (¢, #, 6, v, p) satisfies the weak formulation (3.41).
As a further consequence of the convergences ¢, — ¢ in C([0, T];L*) from (5.10a)
and @, — o in C([0, T]; (W"*)") from (5.10c) we have

?o = Puli—o = ?lizo in L*(Q;RY),
(60, @) g1 = (6n],_g D) yy1ss — (6], D)yyrs for all ® € WHH(Q;RY),

as n — 00, meaning that ¢ and ¢ satisfy the initial conditions (3.41f) and (3.41 g).

This proves that the limit (¢,p, a,v,p) is a weak solution of the multiphase
Cahn-Hilliard-Darcy system in the sense of Definition 3.6. We further point out that
the additional regularity property (3.44) can be verified by arguing exactly as in the
proof of Theorem 3.5. Thus, the proof of Theorem 3.7 is complete.
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