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Existence of weak solutions to multiphase
Cahn–Hilliard–Darcy and Cahn–Hilliard–Brinkman models
for stratified tumor growth with chemotaxis and general
source terms

Patrik Knopfa and Andrea Signorib

aDepartment of Mathematics, University of Regensburg, Regensburg, Germany; bDipartimento di
Matematica ‘‘F. Casorati’’, Universit�a di Pavia, Pavia, Italy

ABSTRACT
We investigate a multiphase Cahn–Hilliard model for tumor growth with
general source terms. The multiphase approach allows us to consider
multiple cell types and multiple chemical species (oxygen and/or
nutrients) that are consumed by the tumor. Compared to classical two-
phase tumor growth models, the multiphase model can be used to
describe a stratified tumor exhibiting several layers of tissue (e.g., prolif-
erating, quiescent and necrotic tissue) more precisely. Our model con-
sists of a convective Cahn–Hilliard type equation to describe the tumor
evolution, a velocity equation for the associated volume-averaged vel-
ocity field, and a convective reaction-diffusion type equation to describe
the density of the chemical species. The velocity equation is either rep-
resented by Darcy’s law or by the Brinkman equation. We first construct
a global weak solution of the multiphase Cahn–Hilliard–Brinkman model.
After that, we show that such weak solutions of this system converge
to a weak solution of the multiphase Cahn–Hilliard–Darcy system as the
viscosities tend to zero in some suitable sense. This means that the
existence of a global weak solution to the Cahn–Hilliard–Darcy system is
also established.
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1. Introduction

The growth of cancer cells is affected by many biological and chemical mechanisms.
Although there already exists a large amount of experimental data resulting from clin-
ical experiments, the possibilities of predicting tumor growth are still in great need of
improvement. In particular, it is crucial to gain a better understanding of the underlying
biological mechanisms such as proliferation, chemotaxis and necrosis.
In the recent past, several mathematical models for tumor growth have been devel-

oped and analyzed from many different viewpoints. Especially diffuse interface models
have gained a lot of interest (see, e.g., [1–4]) and, at least for some of them, it could
already be shown that they compare very well with clinical data (cf. [5–8]). Therefore,
such models might provide further insights into tumor growth dynamics, especially to
understand its key mechanisms and to develop patient-specific treatment strategies.
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Many of these diffuse interface models for tumor growth consist of a Cahn–Hilliard
equation with additional source terms to describe the tumor, coupled to a reaction-diffu-
sion type equation to describe chemical substances which are consumed by the tumor
(usually oxygen and/or nutrients). Most of these models are two-component phase field
models, meaning that only two types of cells, namely tumor cells and healthy cells, are
considered. We refer to [1, 9–16] for the analysis of such models, and to [17–30] for
the investigation of associated optimal control problems.
It is further known that biological materials usually exhibit viscoelastic properties.

For that reason, it was suggested in several works in the literature to include an add-
itional velocity equation in tumor growth models to describe such effects. In some
papers, the Stokes equation was employed to describe the tumor as a viscous fluid (see,
e.g., [31–35]). In other works, Darcy’s law, which is usually used to describe a viscous
flow permeating a porous medium, was chosen instead (cf. [36–38]). In general, in the
context of tumor growth models, both descriptions are a reasonable choice as the
Reynolds number associated with the biological tissues is very small. The decision
between Stokes and Darcy depends on the concrete situation that is to be described.
However, from the viewpoint of mathematical analysis, Darcy’s law is often more diffi-
cult to handle because no derivatives of the velocity field, which could be used to obtain
additional regularity, are involved in the equation. In recent times, Brinkman’s equation
has also become a popular option (cf. [39–42]) as it interpolates between the Stokes
type and the Darcy type description.
The Cahn–Hilliard equation coupled to Darcy’s law is sometimes also referred to as the

Cahn–Hilliard–Hele–Shaw system (especially in the context of two-phase flows). We refer,
for example, to [43–45] for its mathematical investigation. The Cahn–Hilliard–Brinkman sys-
tem was investigated, for instance, in [46,47]. A two-component Cahn–Hilliard–Brinkman
model for tumor growth (including a reaction-diffusion type equation to describe the nutrient
density) was proposed and analyzed in [48]. A simplified variant of this model was studied
in [49–53].
Although such two-cell-species Cahn–Hilliard type models are very viable when describ-

ing the growth of a young tumor whose evolution is mainly governed by proliferation, they
are somewhat limited when processes such as necrosis (cf. [2]) or hypoxia (that is an under-
supply of oxygen, cf. [54]) of tumor cells have already taken place. Indeed, as illustrated in
Figure 1, larger and more mature tumors tend to become stratified (cf. [55–57]), meaning
that the tumor tissue consists of several layers where each of them exhibits different proper-
ties. Indeed, spectroscopic imaging and mapping techniques (see, e.g., [58]) suggest that in
many situations, a tumor consists of three layers: a quickly proliferating outer rim, an inter-
mediate quiescent layer whose cells suffer from hypoxia, and a necrotic core whose cells
have already died off. For a more detailed discussion, we refer the reader to Section 2.
For these reasons, several multiphase models, which allow to describe multiple types

of cell species and nutrients, have already been introduced in the literature. We refer
the reader to [2, 59–65] and the references therein.

1.1. A multiphase Cahn–Hilliard model for tumor growth

In this paper, we combine the ideas of [2] and [48], and we consider the following
multiphase Cahn–Hilliard model for tumor growth:
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divðvÞ ¼ Svðu, rÞ in Q, (1.1a)

divðTðu, v, pÞÞ þ �v ¼ ðruÞ>lþ ðrrÞ>Nrðu, rÞ in Q, (1.1b)

@tuþ divðu� vÞ ¼ divðCðu, rÞrlÞ þ Suðu, r, lÞ in Q, (1.1c)

l ¼ �ceDuþ ce�1WuðuÞ þ Nuðu, rÞ in Q, (1.1d)

@trþ divðr� vÞ ¼ divðDðu, rÞrNrðu, rÞÞ � Srðu, r, lÞ in Q, (1.1e)

@nu ¼ 0 on R, (1.1f)

@nl ¼ 0 on R, (1.1g)

Dðu, rÞrNrðu, rÞn ¼ SCðu, rÞ on R, (1.1h)

Tðu, v, pÞn ¼ 0 on R, (1.1i)

ujt¼0 ¼ u0 in X, (1.1j)

rjt¼0 ¼ r0 in X: (1.1k)

Here, X � R
d, with d 2 f2, 3g, denotes a bounded, smooth domain with boundary C,

and T> 0 stands for an arbitrary final time. The outward unit normal vector of C is
denoted by n, @n denotes the corresponding outward normal derivative, whereas �
denotes the standard tensor product between two vectors. We further use the notation
Q :¼ X� ð0,TÞ and R :¼ C� ð0,TÞ:
In this system of partial differential equations, the following quantities are involved:

� The tumor is represented by the vector-valued phase field function u ¼ ðu1, :::,uLÞ>
(with L 2 N). For any i 2 f1, :::, Lg, the component ui denotes the volume fraction
of the i-th tumor cell type. The healthy cells are represented by u0, which is
defined as

u0 :¼ 1�
XL
i¼1

ui in Q:

This ensures that all volume fractions add up to one, that is

XL
i¼0

ui ¼ 1 in Q: (1.2)

The vector of chemical potentials associated with the phase field u is denoted by l ¼
ðl1, :::, lLÞ>: Moreover, Cð�, �Þ is the mobility tensor. The pair ðu, lÞ is mainly gov-
erned by the Cahn–Hilliard type subsystem (1.1c)–(1.1d). Here, Wu denotes the gradi-
ent of a given multi-well potential W that is a coercive function which is bounded from
below and attains its global minimum at 0 and at the unit vectors ei, i ¼ 1, :::, L: By
this choice, it is energetically favorable (cf. (1.5)) for the components ui, i ¼ 0, :::, L to
attain values close to one (i.e., only the i-th cell type is present) or close to zero (i.e.,
the i-th cell type is not present) in most parts of the domain X. These regions where
only one cell type is present are separated by a diffuse interface whose thickness is
related to the constant e > 0: Therefore, e is usually chosen to be very small.
Moreover, the constant c > 0 is related to the surface tension at the interface.
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� The nutrients are represented by the vector-valued function r ¼ ðr1, :::, rMÞ> (with
M 2 N). For any j 2 f1, :::,Mg, the component rj � 0 denotes the density distribu-
tion of the j-th chemical species. These chemical species are usually oxygen and car-
bohydrates which are consumed by the tumor cells. The functions Nu and Nr

denote the partial derivatives of the chemical free energy density N (see (2.8)) with
respect to the u and the r variable, respectively. Moreover, Dð�, �Þ denotes the
mobility tensor corresponding to r:

� The function v ¼ ðv1, :::, vdÞ represents the volume-averaged velocity field of the
mixture, and p denotes the associated pressure. The quantity � in (1.1b) stands for
the permeability and is assumed to be a positive constant. The symbol Tðu, v, pÞ
denotes the viscous stress tensor which is defined as

Tðu, v, pÞ :¼ 2gðuÞDv þ kðuÞdivðvÞI� pI, (1.3)

where

Dv :¼ 1
2
ðrv þ ðrvÞ>Þ (1.4)

stands for the symmetrized velocity gradient. Here, g and k are nonnegative func-
tions representing the shear viscosity and the bulk viscosity, respectively. If g and k
are identically zero, (1.1b) is known as Darcy’s law, and we refer to the system (1.1)
as the multiphase Cahn–Hilliard–Darcy system (MCHD). If g and k are positive,
(1.1b) is called the Brinkman equation, which can be regarded as an interpolation
between Darcy’s law (g ¼ k ¼ 0 and � > 0) and the Stokes equation (g, k > 0 and
�¼ 0). In this scenario, the system (1.1) is referred to as the multiphase
Cahn–Hilliard–Brinkman system (MCHB).

� The homogeneous Neumann boundary conditions (1.1f) and (1.1g) are standard
choices for Cahn–Hilliard type equations. The condition (1.1f) entails that the mass
flux over the boundary is zero. If the diffuse interface associated with the phase-
field u intersects the boundary C, the condition (1.1g) enforces a perfect ninety
degree contact angle. However, as we are mainly interested in situations where the
tumor is confined in the domain X (i.e., the interface does not intersect the bound-
ary at all), the condition (1.1g) is primarily motivated from the viewpoint of math-
ematical analysis.

� The condition (1.1h) describes the nutrient flux over the boundary which is gov-
erned by the source term SC: In particular, if SC is identically zero, no nutrients
can enter or leave the domain over the boundary.
In the Brinkman case (g, k > 0), the condition (1.1i) can be understood as a ‘‘no
friction’’ boundary condition on the velocity field. In contrast to more traditional
boundary conditions, (1.1i) allows us to handle general solution dependent source
terms Svðu, rÞ in (1.1a). For instance, the no-slip boundary condition vjR ¼ 0 or
the no-penetration boundary condition vjR � n ¼ 0 would enforce the unpleasant
compatibility condition

Ð
XSvðu, rÞ dx ¼ 0, which is avoided by using the no-friction

boundary condition (1.1i). A further advantage of the no-friction condition is that
no boundary contributions of the velocity field appear in the weak formulation of
the system (1.1). This is very favorable for the mathematical analysis and also for
finite element approximations in the context of numerical methods.
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In the Darcy case (g 	 0 and k 	 0), the boundary condition (1.1i) degenerates to a
homogeneous Dirichlet boundary condition on the pressure, i.e., pjR ¼ 0:

� The functions Sv, Su, and Sr are generic source terms that can be specified depend-
ing on the application. In Section 2.1, we present a concrete example for a suitable
choice of these source terms in a four-cell-species tumor model.

Furthermore, it is worth mentioning that the model (1.1) is associated with the follow-
ing free energy (cf. [2]):

Eðu, rÞ ¼
ð
X
ce�1WðuÞ þ ce

2

XL
i¼1

jruij2 dxþ
ð
X
Nðu, rÞ dx: (1.5)

Here, the first integral is referred to as the Ginzburg–Landau energy. The second contri-
bution is the chemical free energy. It is associated with the nutrient density N which is
usually assumed to be of the form

Nðu, rÞ ¼ vr
2
jrj2 � Gðu, rÞ

for a suitable function G. A reasonable choice for the function G in a four-cell-species
tumor model is presented in Section 2.2.
In the absence of source terms (i.e., Sv 	 0, Su 	 0, Sr 	 0, and SC 	 0), we obtain

the following energy law:

d
dt

Eðu, rÞ þ
ð
X
2gðuÞjDvj2 þ �jvj2 dx

þ
ð
X
Cðu, rÞrl : rlþ Dðu, rÞrNrðu, rÞ : rNrðu, rÞ dx ¼ 0:

(1.6)

If the tensors C and D are chosen appropriately (i.e., at least positive semidefinite),
then both integrals on the left-hand side are nonnegative. This implies that the energy
is decreasing along solutions of the system (1.1) over the course of time. Therefore,
(1.6) describes the dissipation of the free energy, and in this context, the integrals on
the left-hand side of (1.6) can be understood as the dissipation rate. This means that, at
least in the absence of source terms, the model (1.1) is thermodynamically consistent.
The multiphase Cahn–Hilliard–Darcy model (MCHD) is heavily based on the model

derived in [2]. The only difference is that we are using a different right-hand side in the
velocity equation (1.1b), which is of the same type as the one proposed for the two-cell-
species scenario in [48]. We point out that this choice plays a crucial role in the deriv-
ation of the energy dissipation law (1.6) and thus, it also provides some advantages for
the mathematical analysis.
The Darcy type description is particularly suitable if the viscoelastic flow associated with

the biological tissues is assumed to behave like a viscous fluid permeating a porous
medium. Although there are some situations where this assumption is justified, this is not
always the case. Therefore, the multiphase Cahn–Hilliard–Brinkman model (MCHB) might
sometimes provide a better description. At least formally, the model (MCHB) converges to
the model (MCHD) as the viscosities g and k tend to zero. We will show that this asymp-
totic limit can be rigorously verified on the level of weak solutions.
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In [2], also several numerical simulations for the system (MCHD) (with slightly different
boundary conditions) were presented. In the case L ¼ M ¼ 1, where only two cell species
(namely tumor cells and healthy cells) and one nutrient species are considered, the exist-
ence of weak solutions to the Cahn–Hilliard–Darcy model with a special choice of source
terms and slightly different boundary conditions compared to (1.1) was established in [66].
For further mathematical investigations related to the two-cell-species Cahn–Hilliard–Darcy
system we refer the reader to [66–69] and the references therein.
Existence results for solutions to multiphase Cahn–Hilliard–Darcy systems for tumor

growth which are related to (1.1) can be found in [70,71]. Although the models studied
in [70] and [71] allow for more general potentials W (including singular potentials like
the logarithmic Flory–Huggins potential) which definitely makes the construction of sol-
utions more challenging, they can at least to some extend be understood as a simplified
variant of the model (1.1). For instance, the systems investigated in [70,71] are limited
to three cell species (L¼ 2) and one nutrient species (M¼ 1), the mobility tensors
Cð�, �Þ and Dð�, �Þ are constant diagonal matrices, the nutrient equation is quasi-station-
ary, and chemotaxis mechanisms are neglected.
In the special case L¼ 1 and M¼ 1, the Cahn–Hilliard–Brinkman model (MCHB)

was introduced in [48], where also the existence of weak solutions was established. A
numerical investigation can be found in [50]. In [49], a simplified version of this model
was investigated, where the time derivative and the convection term in the nutrient
equation are neglected. This means that the simplified nutrient equation is a quasi-static
elliptic equation. For this model, the authors proved strong well-posedness and showed
that the solutions converge to the corresponding Cahn–Hilliard–Darcy model as the vis-
cosities g and k tend to zero. For the analysis of weak and stationary solutions of this
system with singular potentials, we refer to [53]. In [51,52], optimal control problems
for this simplified model were investigated. We further want to mention [72], where the
optimal control of a nonlocal Cahn–Hilliard–Brinkman model (without nutrient equa-
tion) was studied.

1.2. Structure of this paper

The paper is structured as follows. In Section 2, based on the general multiphase
Cahn–Hilliard model (1.1), we present a concrete example for a four-cell-species tumor
model (L¼ 3) with one species of nutrient (M¼ 1). In particular, we describe how the
source terms and the chemical free energy density can be chosen (in accordance with
the mathematical analysis) to describe biologically relevant mechanisms. In Section 3,
we first fix some notation, recall auxiliary results and introduce assumptions that are
necessary for the mathematical analysis. After that, we present the main results of our
paper. The existence of a weak solution to (MCHB) is established in Theorem 3.5. In
Theorem 3.7, we show that the weak solutions of the system (MCHB) constructed in
Theorem 3.5 converge to a weak solution to the system (MCHD) as the viscosities g
and k tend to zero in a suitable sense. This is indeed a novel result since even in the
two-cell-species model presented in [48], this asymptotic has not been investigated. In
particular, this proves the existence of weak solutions to the model (MCHD). We point
out that this ‘‘Darcy limit’’ was also established rigorously in [49] for strong solutions
to a related two-cell-species model with a simplified quasi-stationary nutrient equation.
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The proof of Theorem 3.5 is given in Section 4, whereas the proof of Theorem 3.7 is
presented in Section 5.

2. A concrete tumor model with four cell species

In order to describe a stratified tumor by the system (1.1), we now suggest explicit
choices for the source terms Sv, Su, Sr, and SC as well as the chemical free energy
density N. As often suggested in the literature (see, e.g., [55–57] and the references
therein), we assume that the tumor exibits three layers:

� a proliferating rim whose cells consume nutrients and oxygen to proliferate rapidly,
� an intermediate quiescent region whose cells do not proliferate any more as they

suffer from hypoxia (lack of oxygen) and/or an undersupply of nutrients,
� and a necrotic core whose cells have already died due to the lack of oxygen

and nutrients.

An illustration of such a stratified tumor can be found in Figure 1. In the mathematical
model, we thus choose L¼ 3 to describe the three tumor layers as well as the healthy
cells. The proliferating tumor cells are associated with u1, the component u2 stands for
the quiescent tissue, whereas u3 corresponds to the necrotic region. The volume frac-
tion of the healthy cells is thus given as

u0 ¼ 1�
X3
i¼1

ui:

For simplicity, we restrict ourselves to consider oxygen and nutrients as one single
chemical species, meaning that M¼ 1. Therefore, the nutrient density is a scalar func-
tion; to emphasize this, we will thus write r instead of r:

2.1. The source terms

We first present some explicit choices for the source terms. We assume that Sv, Su,
and Sr depend only on u and r but not on l: Thus, with some abuse of notation, we
write

Figure 1. Schematic representation of the layers of a stratified tumor (L¼ 3).
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Suðu, rÞ ¼ Suðu, r, lÞ, Srðu, rÞ ¼ Srðu, r, lÞ:
For the source term of the nutrient equation (1.1e), we make the ansatz

Srðu, rÞ ¼ �Cu1rþ BðrX � rÞ: (2.1)

Here, the term �Cu1r describes the consumption of nutrients by the proliferating cells
at a constant rate C > 0: Moreover, B denotes a positive amplifying constant, and the
function rX stands for a given nutrient concentration provided by preexisting blood
vessels permeating the tissue. Hence, the term BðrX � rÞ describes supply (r < rX) or
deprivation (r > rX) of nutrients by the vasculature. In a scenario of pure avascular
growth, this term can be neglected.
For the source term in the phase field equation, the following choices are reasonable:

Su u, rð Þ ¼ u1 Pr�Qð Þ, Qu1 �Au2, Au2 �Du3

� �>
, (2.2a)

Su u, rð Þ ¼ 1
e
p u1ð Þ Pr�Qð Þ, 1

e
p u2ð Þ Q �Að Þ, 1

e
p u3ð Þ A � Dð Þ

� �>
: (2.2b)

We point out that similar choices were discussed in [2] for a three-cell-species tumor model
(L¼ 2) neglecting the quiescent region. In (2.2), the positive constants P, Q, A and D
denote the proliferation rate, the quiescence rate, the apoptosis rate, and the degradation

rate, respectively. Moreover, p stands for the polynomial pðsÞ ¼ s2ð1� s2Þ2, s 2 R:

The option (2.2a) models the increase of proliferating tumor cells at the rate P: The
proliferating cells become quiescent at the rate Q which in turn means that the quies-
cent cells increase at the rate Q: Similarly, due to apoptosis, the quiescent cells decrease
and the necrotic cells increase at the rate A: Eventually, the necrotic cells degrade at the
rate D:

The additional idea in (2.2 b) is that the expressions pðuiÞ, i¼ 1, 2, 3, are positive at
the diffuse interface (i.e., in (0, 1)) but zero at the values corresponding to the regions
where only one cell type is present (i.e., in {0, 1}). This means that the evolution of the
interface is directly influenced by the source terms. The scaling factor 1

e is chosen as in
[2,3] in order to retain the possibility of passing to the (formal) sharp interface
limit e ! 0:
Furthermore, as shown in [2], the property

XL
i¼0

ui ¼ u0 þ 1 � u ¼ 1,

where 1 ¼ ð1, :::, 1Þ> 2 R
L, entails that the source term Sv needs to be chosen as

Svðu, rÞ ¼ 1 � Suðu, rÞ þ Su0
ðu, rÞ, (2.3)

where Su0
ðu, rÞ is the source term associated with the healthy tissue described by u0:

For instance, if j 2 f1, :::,Mg is chosen as suggested in (2.2a), a reasonable choice is

Su0
ðu, rÞ ¼ �j Pr u1 for some j 2 0, 1½ 
: (2.4)

In the case j¼ 1, the mass gain of tumor cells equals the mass loss of healthy cells.
This would be the case if all newly emerged tumor cells originate from corrupted
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healthy cells. If j¼ 0, the formation of tumor cells does not mean any loss of healthy
cells, whereas the choice j 2 ð0, 1Þ interpolates between these rather extreme scenarios.
If Su is given by (2.2 b), we recommend to choose Su0

ðu, rÞ ¼ 0 as proposed in [2].
Although the options (2.2), (2.3) and (2.4) make sense from the modeling perspective,

they do not fulfill the assumptions A5 and A6 we have to make in Section 3.3 for the
mathematical analysis. Namely, we require that

Svðu, rÞj j � A, Suðu, rÞ
�� �� � Bðjuj þ jrj þ 1Þ

for constants A,B > 0 depending neither on u nor on r.
To overcome this issue, we replace the term Pr in (2.2) by a bounded expression.

We assume that there exists a critical nutrient concentration cp > 1 such that the prolif-
eration does not increase any more, even if a larger amount of nutrient (r > cp) is
available. Therefore, we introduce a nondecreasing function P 2 C1

bðRÞ which satisfies

PðsÞ ¼ Ps for all s 2 0, cp � 1½ 
,
PðsÞ ¼ Pcp for all s 2 ½cp,1Þ:

(
(2.5)

Moreover, for any fixed r> 0, we introduce a truncation function hr 2 C1
bðRÞ which

satisfies

hrðsÞ ¼ s for all s 2 �r, 1þ r½ 
:
If the multi-well potential W is reasonably chosen and r> 0 is not too small, the values
of the components ui will not exceed the interval ½�r, 1þ r
: Choosing r¼ 1 should
usually be more than enough to ensure this condition. In this case, replacing ui by
hrðuiÞ does not have any effect on the solution of the system (1.1). We thus choose

Su u, rð Þ ¼ hr u1ð Þ P rð Þ � Qu1, Qu1 �Au2, Au2 �Dhr u3ð Þ
� �>,

Su0
u, rð Þ ¼ �jP rð Þhr u1ð Þ for some j 2 0, 1½ 
, (2.6a)

or

Su u, rð Þ ¼ 1
e

pr u1ð Þ P rð Þ � Qð Þ, 1
e

pr u2ð Þ Q � Að Þ, 1
e

pr u3ð Þ A � Dð Þ
� �>

,

Su0
u, rð Þ ¼ 0,

(2.6b)

where pr :¼ p � hr is a bounded function. It is easily seen that both (2.6a) and (2.6 b)
satisfy the assumption A5. Moreover, if the source term Sv is chosen as proposed in
(2.3), it fulfills the assumption A6 for any j 2 ½0, 1
:
For the source term SC appearing in the boundary condition (1.1 h) for the nutrient

equation (1.1e), we assume that it depends only on the nutrient density r. With some
abuse of notation, we thus write

SCðrÞ ¼ SCðu, rÞ:
As suggested in [48,49], we propose the choice

SCðrÞ ¼ KðrC � rÞ, (2.7)
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where rC is a given function describing a preexisting nutrient supply over the boundary,
and K is a nonnegative permeability constant. Notice that in the case K> 0, (1.1 h) is a
Robin type boundary condition, whereas if K¼ 0, it reduces to a no-flux condition.
Moreover, the formal asymptotic limit K ! 1 would produce the Dirichlet condition
r ¼ rC on R. This limit has been investigated in [49] for a simplified two-cell-species
version of the system (1.1) with a quasi-stationary nutrient equation (with M¼ 1).

2.2. The chemical free energy density

For the chemical free energy, we use a similar decomposition of N as proposed in [2,
Sect. 1]. Namely, we choose

Nðu, rÞ ¼ vr
2
jrj2 � Gðu, rÞ, (2.8)

where the function G is defined as

Gðu, rÞ :¼ vuru1 þ fðrÞu2 þ gðrÞu3: (2.9)

Here, the term vuru1 describes the chemotaxis mechanism which drives the proliferat-
ing tumor cells to grow toward regions of high nutrient concentration. We further
assume that there exist critical nutrient concentrations 0 < cn < cq < 1 and functions
f,g 2 C2ðRÞ that satisfy the following conditions:

f > 0 on ðcn, cqÞ,
f � 0 on ½cq,1Þ,

(
(2.10)

g > 0 on ð�1, cnÞ,
g � 0 on ½cn,1Þ:

(
(2.11)

The reasons behind these choices are the following:

� If the nutrient concentration lies between the critical values cn and cq, we expect
the cells to become quiescent due to a lack of nutrient. This means that the amount
of quiescent cells (that are associated with u2) will increase. We describe this
behavior by assuming that f is positive on (cn, cq). As a consequence the whole
term fðrÞu2 is positive, provided that u2 is positive, and with regard to the energy
E presented in (1.5), it is thus energetically favorable if u2 further increases.

� If the nutrient concentration is below the critical value cn, we expect the cells to
necrotize, meaning that the amount of necrotic cells (described by u3) will increase.
To model this behavior, we assume that g > 0 on ð�1, cnÞ: This entails that the
term gðrÞu3 becomes positive if u3 is positive. It is thus energetically favorable if
u3 increases.

� We point out that in (2.10), the sign of f on the interval ð�1, cnÞ is not prescribed
as this strongly depends on the modeling details. For instance, if f � 0 on
ð�1, cnÞ, the cells will not become quiescent as long as the nutrient concentration
is below cn. They will rather necrotize due to the term gðrÞu3: On the other hand,
if f > 0 on ð�1, cnÞ, there is a competition between quiescence and necro-
sis effects.
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In the mathematical analysis, we are only able to handle the case where f and g are
affine functions (see Assumption A4). Hence, in accordance with (2.10) and (2.11), the
only reasonable choices are

fðsÞ :¼ aðcq � sÞ, s 2 R, and gðsÞ :¼ bðcn � sÞ, s 2 R,

with given positive constants a and b acting as weights.

2.3. The tensors C and D

In general, the mobility tensors C and D can be fourth-order tensors (see A2 in Section
3.3) or second-order tensors (i.e., matrices; see Remark 3.3(a)). A simple but very com-

mon choice is to choose C 2 R
L�L and D 2 R

M�M as diagonal matrices with uniformly
positive functions as diagonal entries. However, it is worth mentioning that under the
assumptions in Section 3.3, even more complicated choices would be possible, as long
as the tensors are uniformly positive definite.
In the present scenario with L¼ 3 and M¼ 1, we consider a matrix-valued function

C : R3 � R ! R
3�3 and a scalar function D : R3 � R ! R: We assume that the func-

tion D is uniformly positive, and that

Cðu,rÞ½ 
ij ¼ miðu, rÞdij, i, j ¼ 1, :::, L, (2.12)

where mi : R
3 � R ! R, i ¼ 1, :::, L are given, uniformly positive functions and dij

stands for the Kronecker symbol.

3. Mathematical analysis

3.1. Notation

We first fix some notation that will be used throughout the paper.
The natural numbers excluding zero are denoted by N, whereas the natural numbers

including zero are denoted as N0: For any Banach space X we denote its associated
norm by k � kX , and its topological dual space by X0: The duality pairing of X0 and X is
denoted by h�, �iX: If X is a Hilbert space, we denote its inner product by ð�, �ÞX: Note
that for Banach spaces X and Y, the intersection X \ Y is also a Banach space with
respect to the norm k � kX\Y :¼ k � kX þ k � kY :
For any k 2 N0, CkðUÞ stands for the space of k-times continuously differentiable

functions on any set U for which this definition makes sense. The subspace Ck
bðUÞ con-

sists of all bounded functions in CkðUÞ whose partial derivatives up to the order k are

also bounded. Note that Ck
bðUÞ is a Banach space with respect to its standard norm

which is denoted by k � kCk
b
: Moreover, Ck

c ðUÞ denotes the space of CkðUÞ-functions that
have compact support in U. In the case k¼ 0, we just write CðUÞ ¼ C0ðUÞ, CbðUÞ ¼
C0
bðUÞ, and CcðUÞ ¼ C0

c ðUÞ:
For any 1 � p � 1 and k � 0, the standard Lebesgue and Sobolev spaces defined on

X are denoted as LpðXÞ and Wk, pðXÞ, and the corresponding norms are denoted as
k � kLpðXÞ ¼ k � kLp and k � kWk, pðXÞ ¼ k � kWk, p , respectively. In the case p¼ 2, these spaces
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are Hilbert spaces and we use the standard notation HkðXÞ ¼ Wk, 2ðXÞ: A similar nota-
tion is used for Lebesgue and Sobolev spaces on C, where the norms are denoted by
k � kLpðCÞ ¼ k � kLpC and k � kWk, pðCÞ ¼ k � kWk, p

C
:

For brevity, we sometimes write Lp, Wk, p, Hk and LpC, W
k, p
C , and Hk

C to denote the
corresponding spaces of vector or matrix-valued functions defined on X and C,
respectively.
We further define the Hilbert space

H2
nðX;RnÞ :¼ ff 2 H2ðX;RnÞ : @nf ¼ 0 a:e: on Cg

for any n 2 N: Moreover, we set

L2divðXÞ :¼ ff 2 L2ðX;RdÞ : divðfÞ 2 L2ðXÞg:
Here, the relation divðfÞ 2 L2ðXÞ means that the divergence exists in the weak sense
and belongs to L2ðXÞ: Notice that L2divðXÞ is a Hilbert space when equipped with the
inner product

f , gð Þ2L2div :¼ f , gð Þ2L2 þ ðdivðfÞ , divðgÞÞ2L2 for all f , g 2 L2divðXÞ,
and its induced norm. Moreover, we recall that for any f 2 L2divðXÞ, the expression f � n
is well defined on C by the following integration by parts formula:

hf � n,/iH1=2ðCÞ ¼
ð
X
f � r/ dx þ

ð
X
/ divðfÞ dx for all / 2 H1ðXÞ; (3.1)

see, e.g., [73, Sect. III.2]. Moreover, there exists a positive constant Cdiv, which depends
only on X, such that

kf � nkðH1=2
C Þ0 � CdivkfkL2div :

For vectors a ¼ ða1, :::, akÞ> 2 R
k and b ¼ ðb1, :::, blÞ> 2 R

l, we denote the standard ten-

sor product by a� b which produces an element of Rk�l and is defined componentwise
as ða� bÞij ¼ aibj for all i 2 f1, :::, kg, j 2 f1, :::, lg:
For given matrices A,B 2 R

n�m, we define the scalar product

A : B :¼
Xn
i¼1

Xm
j¼1

A½ 
ij B½ 
ij:

Furthermore, for any fourth order tensor C in R
n�m�n�m, and any matrix A 2 R

n�m,
we set

CA½ 
ij :¼
Xn
k¼1

Xm
l¼1

C½ 
ijkl A½ 
kl for all i 2 f1, :::, ng and j 2 f1, :::,mg,

and we use the notation

jAj ¼
Xn
i¼1

Xm
j¼1

A½ 
ij
�� ��2 !1

2

, jCj ¼
Xn
i, k¼1

Xm
j, l¼1

C½ 
ijkl
�� ��2 !1

2

:
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3.2. Auxiliary results

Before diving into the obtained results, let us first introduce some useful auxil-
iary results.
The following interpolation result for Sobolev spaces on bounded domains can be

found in [74, Sec 4.3.1, Thm. 1].

Lemma 3.1 (Interpolation between Sobolev spaces). Suppose that X � R
d with d 2 N is

a bounded smooth domain. Furthermore, let h 2 ð0, 1Þ be arbitrary, and let r, s0, and s1
be any real numbers satisfying

r ¼ ð1� hÞs0 þ hs1:

Then HrðXÞ is the real interpolation of Hs0ðXÞ and Hs1ðXÞ with interpolation parameter
h, that is,

HrðXÞ ¼ ðHs0ðXÞ,Hs1ðXÞÞh, 2:
In particular, there exists a constant C> 0 such that for all f 2 Hs0ðXÞ \Hs1ðXÞ,

kf kHrðXÞ � Ckf k1�h
Hs0 ðXÞkf khHs1 ðXÞ:

Next, we recall a well-known result related to the solvability of the divergence equation.
The lemma and the corresponding proof can be found, e.g., in [73, Sec. III.3].

Lemma 3.2. Let X � R
d, d � 2, be a bounded domain with Lipschitz boundary C, and

let q 2 ð1,1Þ be arbitrary. Then, for every f 2 LqðXÞ and a 2 W1�1
q, 1ðCÞ withð

X
f dx ¼

ð
C
a � n dS, (3.2)

there exist a strong solution u 2 W1, qðXÞ to the problem

divðuÞ ¼ f in X,

u ¼ a on C,

(

and a positive constant CX, q depending only on X and q, such that

kukW1, q Xð Þ � CX, q kf kLq Xð Þ þ kakW1�1=q, 1 Cð Þ
� �

:

We further recall the following inequalities:

� Korn’s inequality: Let X � R
d with d � 2 be a bounded domain with Lipschitz-

boundary. There exists a positive constant CK depending only on X such that for
all v 2 H1ðXÞ,

kvkH1 � CKðkvk2L2 þ kDvk2L2Þ1=2: (3.3)

� Gagliardo–Nirenberg inequality: Let X � R
d with d � 2 be a bounded domain

with Lipschitz-boundary. We assume that p, q, r 2 ½1,1
, m, j 2 N0 with 0 � j < m,
and h 2 ½ jm , 1
 satisfy the relation

j� d
p
¼ m� d

r

� �
hþ � d

q

� �
ð1� hÞ:
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Then, there exists a positive constant CGN depending only on X, d, m, j, p, q, r,
and h, such that for all f 2 Wm, rðXÞ \ LqðXÞ,

kDjfkLp � CGNkfkhWm, rkfk1�h
Lq : (3.4)

� Agmon’s inequality (see, e.g., [75, Lem. 4.10]): Let X � R
d with d 2 f2, 3g be an

open, bounded domain of class C2. There exists a positive constant CAG such that
for all f 2 H2ðXÞ,

kfkL1 � CAGkfk
1
2

H1kfk
1
2

H2 : (3.5)

3.3. Assumptions

The following assumptions are supposed to hold throughout the paper.

A1 The set X � R
d with d 2 f2, 3g is a smooth, bounded domain with boundary C :¼

@X: Moreover, the parameters �, e, and c are given positive constants.
A2 The phase mobility tensor C and the nutrient mobility tensor D are bounded, con-

tinuously differentiable functions

C : RL � R
M ! R

L�d�L�d, D : RL � R
M ! R

M�d�M�d: (3.6)

Moreover, C and D are symmetric in the following sense:

C½ 
ijkl ¼ C½ 
klij for all i, k 2 f1, :::, Lg and j, l 2 f1, :::, dg,
D½ 
ijkl ¼ D½ 
klij for all i, k 2 f1, :::,Mg and j, l 2 f1, :::, dg:

There further exist positive constants C0 and D0 such that for all p 2 R
L, s 2 R

M ,
A 2 R

L�d, and B 2 R
M�d,

C0jAj2 � Cðp, sÞA : A, D0jBj2 � Dðp, sÞB : B:

This means that the tensors Cðp, sÞ and Dðp, sÞ are uniformly positive definite for
all p 2 R

L and s 2 R
M:

A3 The viscosities are functions g, k 2 C1
bðRL;RÞ, and there exist constants g0, g1, k

such that, for every p 2 R
L, it holds

0 < g0 � gðpÞ � g1, 0 � kðpÞ � k: (3.7)

A4 The chemical free energy density N is defined as

N : RL � R
M ! R, Nðp, sÞ ¼ vr

2
jsj2 � Gðp, sÞ: (3.8)

Here, vr is a positive constant, and the function G is given as

Gðp, sÞ ¼ s>Bpþ a � pþ b � sþ c for all p 2 R
L, s 2 R

M, (3.9)

with prescribed coefficients B 2 R
M�L, a 2 R

L, b 2 R
M and c 2 R: We will use the

notation
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Guðp, sÞ :¼ @pGðp, sÞ ¼ B
>sþ a, Nuðp, sÞ :¼ @pNðp, sÞ ¼ �B

>s� a,

Grðp, sÞ :¼ @sGðp, sÞ ¼ Bpþ b, Nrðp, sÞ :¼ @sNðp, sÞ ¼ vrs� Bp� b,

Gruðp, sÞ :¼ @s@pGðp, sÞ ¼ B, Nruðp, sÞ :¼ @s@pNðp, sÞ ¼ �B,

Grrðp, sÞ :¼ @2
sGðp, sÞ ¼ 0, Nrrðp, sÞ :¼ @2

sNðp, sÞ ¼ vrI,

Guuðp, sÞ :¼ @2
pGðp, sÞ ¼ 0, Nuuðp, sÞ :¼ @2

pNðp, sÞ ¼ 0,

where I stands for the identity matrix in R
M�M: In particular, we have Nu ¼ �Gu,

Nru ¼ �Gru, and Nuu ¼ �Guu: Consequently, there exist positive constants AG,
BG, CG and DG such that for all p 2 R

L and s 2 R
M :

jGðp, sÞj � CGðjpjjsj þ jpj þ jsj þ 1Þ, (3.11)

jGuðp, sÞj � AGðjsj þ 1Þ, jGrðp, sÞj � BGðjpj þ 1Þ, (3.12)

kGruðp, sÞk � DG, (3.13)

where k � k stands for the operator norm. This directly implies the existence of posi-
tive constants AN, BN, and CN such that for all p 2 R

L and s 2 R
M :

jNðp, sÞj � CNðjsj2 þ jpjjsj þ jpj þ jsj þ 1Þ, (3.14)

jNuðp, sÞj � ANðjsj þ 1Þ, jNrðp, sÞj � BNðjpj þ jsj þ 1Þ: (3.15)

It further follows that Nrr is uniformly positive definite with

n>Nrrðp, sÞn ¼ vrjnj2 (3.16)

for all p 2 R
L and n, s 2 R

M: In combination with the assumptions on the tensor D
in A2, this ensures that the nutrient equation (1.1e) has a parabolic structure.
Moreover, for all p 2 R

L and s 2 R
M the matrix Nrrðp, sÞ is invertible and the oper-

ator norm of the inverse matrix is uniformly bounded by

kðNrrðp, sÞÞ�1k � v�1
r : (3.17)

A5 The source terms Su and Sr are continuously differentiable, vector-valued functions

Su : RL � R
M � R

L ! R
L, Sr : RL � R

M � R
L ! R

M: (3.18)

We further assume that there exist continuously differentiable functions

Ku : RL � R
M ! R

L, hu : RL � R
M ! R

L�L, (3.19)

Kr : RL � R
M ! R

M , hr : R
L � R

M ! R
M�L, (3.20)

such that Su and Sr exhibit the following decomposition:

Suðp, s,mÞ ¼ Kuðp, sÞ � huðp, sÞm, (3.21)

Srðp, s,mÞ ¼ Krðp, sÞ � hrðp, sÞm (3.22)

for all p,m 2 R
L and s 2 R

M:

Moreover, we demand that there exist positive constants Au,Ar,Bu and Br such
that, for all p 2 R

L and s 2 R
M , we have

jKuðp, sÞj � Auðjpj þ jsj þ 1Þ, khuðp, sÞk � Bu, (3.23)
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jKrðp, sÞj � Arðjpj þ jsj þ 1Þ, khrðp, sÞk � Br: (3.24)

In particular, this entails that there exists a positive constant BS such that, for all
p,m 2 R

L and s 2 R
M ,

jSuðp, s,mÞj þ jSrðp, s,mÞj � BSðjpj þ jsj þ jmj þ 1Þ: (3.25)

A6 The source term Sv is a continuously differentiable scalar function

Sv : R
L � R

M ! R: (3.26)

We further assume that there exists a positive constant AS such that for all p 2 R
L

and s 2 R
M,

jSvðp, sÞj � AS: (3.27)

A7 The boundary source term SC is continuously differentiable, vector-valued function

SC : RL � R
M ! R

M:

Furthermore, there exists a continuously differentiable function

KC : RL � R
M ! R

M , (3.28)

and a nonnegative constant K such that

SCðp, sÞ ¼ KðKCðp, sÞ � sÞ, (3.29)

for all p 2 R
L and s 2 R

M: Moreover, there exists a positive constant AC such that
for all p 2 R

L and s 2 R
M,

jKCðp, sÞj � AC: (3.30)

A8 The potential W belongs to C2ðRL;RÞ and there exist positive constants AW,BW

such that for every p 2 R
L it holds that

WðpÞ � AWjpj2 � BW: (3.31)

In addition, the potential can be decomposed as W ¼ Wð1Þ þWð2Þ with Wð1Þ,Wð2Þ 2
C2ðRL;RÞ, where Wð1Þ is convex, and Wð2Þ : RL ! R

L is Lipschitz-continuous.
For the gradient and the Hessian of W, we will write

Wu :¼ rW, Wuu :¼ D2W,

and we will use an analogous notation for Wð1Þ and Wð2Þ:
Moreover, we assume:
A8.1 If the matrix-valued function hu in A5 is uniformly positive definite, that is

9h0 > 0 8p, f 2 R
L, s 2 R

M : f>huðp, sÞf � h0jfj2, (3.32)

there exist an exponent q 2 ½2, 4
, and positive constants BW, CW and DW, such that

jWðpÞj � BWðjpjq þ 1Þ, jWuðpÞj � CWðjpjq�1 þ 1Þ,
jWuuðpÞj � DWðjpjq�2 þ 1Þ:

(3.33)

for all p 2 R
L:

A8.2 If the matrix-valued function hu in A5 is not uniformly positive definite, that is
(3.32) does not hold, there exist positive constants BW, CW and DW such that

16 P. KNOPF AND A. SIGNORI



jWðpÞj � BWðjpj2 þ 1Þ, jWuðpÞj � CWðjpj þ 1Þ, jWuuðpÞj � DW (3.34)

for all p 2 R
L:

A9 The diffuse interface parameter e is a fixed positive constant which satisfies

e <
cvrAW

8C2
G

: (3.35)

Here, AW is the constant from (3.31), vr and CG are the constants from A4, and
c > 0 is the surface tension parameter.

Remark 3.3. (a) Instead of fourth-order tensors, C and D could also just be matrices
(second-order tensors) in R

L�L and R
M�M , respectively. This because a matrix can still

be described by an associated fourth-order tensor in the following way:
Suppose that n,m 2 N, and M 2 R

n�n is a given matrix. Then the corresponding
fourth-order tensor M 2 R

n�m�n�m is defined as

M½ 
ijkl :¼ djl M½ 
ik for all i, k 2 f1, :::, ng and j, l 2 f1, :::,mg,
where djl stands for the Kronecker symbol. In particular, for any matrix A 2 R

n�m, it
thus holds

MA½ 
ij ¼
Xn
k¼1

Xm
l¼1

M½ 
ijkl A½ 
kl ¼
Xn
k¼1

M½ 
ik A½ 
kj ¼ MA½ 
ij for all i 2 f1, :::, ng

and j 2 f1, :::,mg,
which means MA ¼ MA:
(b) We point out that the tensors, the nutrient density and the source terms proposed

in Section 2 for the special case L¼ 3 and M¼ 1 fit into the framework of the above
assumptions. To be precise, the source terms Sr defined in (2.1) and Su introduced in
(2.6) satisfy A5 (with hu 	 0 and hr 	 0), the source term Sv proposed in (2.3) fulfills
A6, the nutrient density defined in (2.8)–(2.11) satisfies A4, and the tensors C and D

introduced in Section 2.3 fulfill A2. Moreover, the boundary source term proposed in
(2.7) satisfies A7 with KCðp, sÞ 	 rC, provided that the prescribed function rC is suffi-
ciently regular.
(c) As the positive coefficient e is related to the thickness of the diffuse interface, it is

usually chosen to be very small in the applications. Therefore, assumption A9 is not a
severe restriction.

3.4. Main results

Let us now present the main results of this paper. First, after introducing the notion of
weak solutions to the multiphase Cahn–Hilliard–Brinkman system (MCHB), we state
the existence of such a weak solution. Unfortunately, in this general setting, we are
not able to prove the uniqueness of weak solutions. This is mainly due to the fairly
low regularity of the nutrient variable r, of which we can merely establish r 2
L1ð0,T; L2Þ \ L2ð0,T; H1Þ:
A weak solution to the multiphase Cahn–Hilliard–Brinkman system (MCHB) is

defined as follows.
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Definition 3.4 (Definition of a weak solution to (MCHB)). The quintuplet ðu, l, r, v, pÞ
is called a weak solution to the multiphase Cahn–Hilliard–Brinkman system (1.1) if the
following conditions are satisfied:

(i) The functions ðu, l, r, v, pÞ possess the regularities

u 2 H1ð0,T; ðH1Þ0Þ \ Cð 0,T½ 
; L2Þ \ L1ð0,T;H1Þ,
r 2 W1, 43ð0,T; ðH1Þ0Þ \ Cð 0,T½ 
; ðH1Þ0Þ \ L1ð0,T; L2Þ \ L2ð0,T;H1Þ,
ujC 2 Cð 0,T½ 
; L2CÞ, rjC 2 L4ð0,T;L2CÞ,
l 2 L2ð0,T;H1Þ, v 2 L2ð0,T;H1Þ, p 2 L

4
3ð0,T; L2Þ,

divðu� vÞ 2 L2 0,T; L
3
2

� �
, divðr� vÞ 2 L1 0,T; L

3
2

� �
:

8>>>>>>>><
>>>>>>>>:

(3.36)

(ii) The weak formulationð
X
Tðu, v, pÞ : rgþ �v � g dx ¼

ð
X
ðruÞ>l � gþ ðrrÞ>Nrðu, rÞ � g dx, (3.37a)

h@tu , fiH1 þ
ð
X
divðu� vÞ � f dx ¼ �

ð
X
Cðu, rÞrl : rfþ Suðu, r, lÞ � f dx,

(3.37b)ð
X
l � h dx ¼

ð
X
ceru : rhþ ce�1WuðuÞ � hþNuðu, rÞ � h dx, (3.37c)

h@tr , fiH1 þ
ð
X
divðr� vÞ � n dx ¼ �

ð
X
Dðu, rÞrNrðu, rÞ : rn dx

�
ð
X
Srðu, r, lÞ � n dxþ

ð
C
SCðu, rÞ � n dS,

(3.37d)

holds almost everywhere on ð0,TÞ for all test functions g 2 H1ðX;RdÞ, f, h 2
H1ðX;RLÞ and n 2 H1ðX;RMÞ: It further holds that

divðvÞ ¼ Svðu, rÞ a:e: in Q, (3.37e)

ujt¼0 ¼ u0 a:e: in X, (3.37f)

hrjt¼0,UiH1 ¼ hr0,UiH1 for all U 2 H1ðX;RMÞ: (3.37g)

The corresponding existence result reads as follows.

Theorem 3.5 (Existence of weak solution to (MCHB)). Suppose that the assumptions
A1–A9 hold, and let u0 2 H1ðX;RLÞ and r0 2 L2ðX;RMÞ be any initial data.

Then, there exists a weak solution ðu, l, r, v, pÞ to system (1.1) in the sense of
Definition 3.4. In addition, this solution satisfies

u 2 L2ð0,T;H3Þ \ Cð 0,T½ 
;H1Þ, WuðuÞ 2 L4ð0,T;L2Þ \ L2ð0,T; L6Þ: (3.38)

Moreover, there exists a positive constant CB that may depend on the initial data and the
constants introduced in Section 3.3 except for g0 such that
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kukL1ð0,T;H1Þ\L2ð0,T;H3Þ þ krkL1ð0,T;L2Þ\L2ð0,T;H1Þ þ krkL4ð0,T;L2CÞ
þ klkL2ð0,T;H1Þ þ kvkL2ð0,T;L2Þ þ k

ffiffiffiffiffiffiffiffiffiffi
gðuÞ

p
Dvk2L2ð0,T;L2Þ þ kpkL4=3ð0,T;L2Þ

þ kWuðuÞkL4ð0,T;L2Þ\L2ð0,T;L6Þ þ krNrðu, rÞkL2ð0,T;L2Þ
þ kdivðu� vÞkL4=3ð0,T;L3=2Þ þ kdivðr� vÞkL1ð0,T;L1Þ � CB:

(3.39)

The proof of this theorem will be presented in Section 4.
The second main result is the existence of weak solutions to the multiphase Cahn–

Hilliard–Darcy system (MCHD). Roughly speaking, this can be established by investigating the
‘‘Darcy limit’’ where the positive viscosities g and k in the Cahn–Hilliard–Brinkman system
(MCHB) are sent to zero. In this way, we can show that the corresponding weak solutions of
the system (MCHB) converge to a weak solution of the system (MCHD).
To begin with, let us start by presenting the notion of weak solution for the

Cahn–Hilliard–Darcy model.

Definition 3.6 (Definition of a weak solution to (MCHD)). The quintuplet ðu, l, r, v, pÞ
is called a weak solution to the multiphase Cahn–Hilliard–Darcy system (1.1) if the fol-
lowing conditions are satisfied:

(i) The functions ðu, l, r, v, pÞ possess the regularities

u 2 W1, 85ð0,T; ðH1Þ0Þ \ Cð 0,T½ 
; L2Þ \ L1ð0,T;H1Þ,
r 2 W1, 1ð0,T; ðW1, 4Þ0Þ \ Cð 0,T½ 
; ðW1, 4Þ0Þ \ L1ð0,T; L2Þ \ L2ð0,T;H1Þ,
ujC 2 Cð 0,T½ 
; L2CÞ, rjC 2 L4ð0,T; L2CÞ, l 2 L2ð0,T;H1Þ,
p 2 L

4
3ð0,T; L2Þ \ L1

�
0,T;W

1, 32
0

�
, v 2 L2ð0,T; L2divÞ,

divðu� vÞ 2 L
8
5ð0,T; ðH1Þ0Þ \ L

4
3 0,T; L

3
2

� �
, divðr� vÞ 2 L1ð0,T; L1Þ:

8>>>>>>>><
>>>>>>>>:

(3.40)

(ii) The weak formulationð
X
rp � gþ �v � g dx ¼

ð
X
ðruÞ>l � gþ ðrrÞ>Nrðu, rÞ � g dx, (3.41a)

h@tu, fiH1 þ
ð
X
divðu� vÞ � f dx ¼ �

ð
X
Cðu, rÞrl : rfþ Suðu, r, lÞ � f dx, (3.41b)

ð
X
l � h dx ¼

ð
X
ceru : rhþ ce�1WuðuÞ � hþNuðu, rÞ � h dx, (3.41c)

h@tr, niW1, 4 þ
ð
X
divðr� vÞ � n dx ¼ �

ð
X
Dðu, rÞrNrðu, rÞ : rn dx

�
ð
X
Srðu, r, lÞ � n dxþ

ð
C
SCðu, rÞ � n dS,

(3.41d)

holds almost everywhere on ð0,TÞ for all test functions g 2 L2ðX;RdÞ, f, h 2
H1ðX;RLÞ, and n 2 W1, 4ðX;RMÞ. Moreover, the following conditions are fulfilled

divðvÞ ¼ Svðu, rÞ a:e: in Q, (3.41e)
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ujt¼0 ¼ u0 a:e: in X, (3.41f)

hrjt¼0,UiW1, 4 ¼ hr0,UiW1, 4 for all U 2 W1, 4ðX;RMÞ: (3.41g)

The sense in which weak solutions to (MCHB) convergence to a weak solution of
(MCHD) is specified by the following theorem.

Theorem 3.7 (“Darcy limit” and existence of a weak solution to (MCHD)). Suppose that

A1–A9 are fulfilled, and let u0 2 H1ðX;RLÞ and r0 2 L2ðX;RMÞ be arbitrary initial
data. Furthermore, let fgngn2N and fkngn2N be sequences of viscosity functions such that
for each fixed n 2 N, gn and kn are compatible with A3. We further assume that

kgnkCbðRÞ ! 0, kknkCbðRÞ ! 0, as n ! 1: (3.42)

For any n 2 N, let ðun, ln, rn, vn, pnÞ denote the weak solution of the multiphase Cahn–
Hilliard–Brinkman system (1.1) constructed in Theorem 3.5 associated with the viscosities gn
and kn.
Then, there exists a quintuplet ðu, l, r, v, pÞ such that for all s 2 ½0, 1Þ,

un ! u weakly- in L1ð0,T;H1Þ,
weakly in W1, 85ð0,T; ðH1Þ0Þ \ L2ð0,T;H3Þ, a:e: in Q,

and strongly in Cð 0,T½ 
;HsÞ \ L2ð0,T;H2þsÞ,
unjC ! ujC strongly in Cð 0,T½ 
; L2CÞ, and a:e: on R,

rn ! r weakly- in L1ð0,T; L2Þ,
weakly in W1, 1ð0,T; ðW1, 4Þ0Þ \ L2ð0,T;H1Þ, a:e: in Q,

and strongly in Cð 0,T½ 
; ðW1, 4Þ0Þ \ L2ð0,T;HsÞ,
rnjC ! rjC weakly in L4ð0,T; L2CÞ, strongly in L2ð0,T; L2CÞ, and a:e: on R,

ln ! l weakly in L2ð0,T;H1Þ,
vn ! v weakly in L2ð0,T; L2divÞ,
pn ! p weakly in L

4
3ð0,T; L2Þ,

divðun � vnÞ ! s weakly in L
8
5ð0,T; ðH1Þ0Þ \ L

4
3 0,T; L

3
2

� �
,

divðrn � vnÞ ! # weakly in L1ð0,T;L1Þ,

as n ! 1, along a nonrelabeled subsequence.
Moreover, the limit ðu, l, r, v, pÞ is a weak solution to the multiphase Cahn–Hilliard–

Darcy system (1.1) in the sense of Definition 3.6. In addition, this solution satisfies

u 2 L2ð0,T;H3Þ \ Cð 0,T½ 
;H1Þ, WuðuÞ 2 L4ð0,T;L2Þ \ L2ð0,T; L6Þ: (3.44)

Comment. We point out that for any n 2 N, the choice of the corresponding weak solu-
tion to (MCHB) is explicit, since we are choosing exactly the corresponding weak solution
that was constructed in Theorem 3.5. This means that even though the weak solutions to
(MCHB) might not be unique, we do not require the axiom of choice for our approach.
The proof of Theorem 3.7 is presented in Section 5.
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4. Existence of weak solutions to the (MCHB) system

This section is devoted to the construction of a weak solution to the multiphase
Cahn–Hilliard–Brinkman system (MCHB) in the sense of Definition 3.4.

Proof of Theorem 3.5. To construct a weak solution, we discretize the weak formulation
(3.37a)–(3.37d) via a Faedo–Galerkin scheme. Then, we derive suitable a priori estimates
for the discrete approximate solutions that are independent of the dimension of the
finite-dimensional subspace. This allows us to show that the sequence of approximate
solutions converges to a weak solution of the Brinkman system (1.1) in the sense speci-
fied by Definition 3.4.
In the whole proof, the letter C denotes a generic positive constant that may depend

only on the initial data and the constants introduced in Section 3.3 (including the final
time T), except for g0 as this constant will play a role in the “Darcy limit” (see
Theorem 3.7). The proof is split into several steps.

Step 1: The Faedo–Galerkin scheme. The idea of our Faedo–Galerkin scheme is to spa-
tially approximate the functions u, l and r by functions from suitable finite-dimen-
sional subspaces.
Therefore, we consider the scalar eigenvalue problem for the Laplace operator with

homogeneous Neumann boundary conditions:

�Dw ¼ kw in X, @nw ¼ 0 on C: (4.1)

It is well known, that there exists a sequence fðki ,wiÞgi2N of eigenvalues ki and corre-
sponding eigenfunctions wi. We further know that all eigenvalues are nonnegative, and
can be sorted such that they form a nondecreasing sequence fkigi2N with ki ! 1 as
i ! 1: Furthermore, the eigenfunctions can be chosen such that kwikL2 ¼ 1 for all i 2
N: In particular, for the first eigenfunction, we choose w1 ¼ jXj�1=2: As the domain X
is smooth, elliptic regularity theory implies that wi 2 C1ð�XÞ for all i 2 N: Moreover,
the eigenfunctions are orthogonal with respect to the inner product of L2ðXÞ and thus,
they form an orthonormal Schauder basis of L2ðXÞ: In addition, the family fwigi2N is
also a Schauder basis of H2

nðXÞ:
We now define

wði�1Þkþj :¼ wjei for all i 2 f1, :::, Lg, j 2 N,

zði�1Þkþj :¼ wjei for all i 2 f1, :::,Mg, j 2 N

where ei stands for the i-th unit vector in R
L or R

M , respectively. It is straightforward
to check that the family fwmgm2N is an orthonormal Schauder basis of L2ðX;RLÞ, and

also a Schauder basis of H2
nðX;RLÞ: Similarly, the family fzmgm2N is an orthonormal

Schauder basis of L2ðX;RMÞ, and also a Schauder basis of H2
nðX;RMÞ: For any k 2 N,

we introduce the finite dimensional subspaces

Wk :¼ span fwði�1Þkþjgi¼1, :::, L, j¼1, :::, k ¼ span fw1, :::,wkLg � H1ðX;RLÞ,
Zk :¼ span fzði�1Þkþjgi¼1, :::,M, j¼1, :::, k ¼ span fz1, :::, zkMg � H1ðX;RMÞ,
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and we write PWk and PZk to denote the L2-orthogonal projection onto Wk and Zk,
respectively.
We now make the ansatz

ukðx, tÞ :¼
XkL
i¼1

aki ðtÞwiðxÞ, lkðx, tÞ :¼
XkL
i¼1

bki ðtÞwiðxÞ, rkðx, tÞ :¼
XkM
i¼1

cki ðtÞziðxÞ,

(4.2)

where the coefficients aki , b
k
i , i 2 f1, :::, kLg, and cki , i 2 f1, :::, kMg, are assumed to be

continuously differentiable functions that are still to be determined.
At every time t 2 ½0,T
 in which the expressions in (4.2) are declared, we further

introduce the functions ðvkðtÞ, pkðtÞÞ 2 H2 �H1 as the unique strong solution of the
system

�divðTðukðtÞ, vkðtÞ, pkðtÞÞÞ þ �vkðtÞ ¼ ðrukðtÞÞ>lkðtÞ þ ðrrkðtÞÞ>NrðukðtÞ, rkðtÞÞ in X,

(4.3a)

divðvkðtÞÞ ¼ SvðukðtÞ, rkðtÞÞ in X,

(4.3b)

TðukðtÞ, vkðtÞ, pkðtÞÞn ¼ 0 on C:

(4.3c)

As the right-hand sides of (4.3a) and (4.3 b) belong to L2ðX;RdÞ and H1ðXÞ, respect-
ively, the existence and the uniqueness of the solution ðvkðtÞ, pkðtÞÞ 2 H2 �H1 follows
from a fundamental result on Stokes operators with variable viscosity established in [76]
that can also be found in [48, Lem. 1.5].
Moreover, we use (4.3 b) and the chain rule to derive the identities

divðukðtÞ � vkðtÞÞ ¼ rukðtÞ vkðtÞ þ ukðtÞ SvðukðtÞ, rkðtÞÞ in X, (4.4)

divðrkðtÞ � vkðtÞÞ ¼ rrkðtÞ vkðtÞ þ rkðtÞ SvðukðtÞ, rkðtÞÞ in X, (4.5)

for all t 2 ½0,T
 in which the expressions in (4.2) are declared.
The next goal is to determine the continuously differentiable coefficients aki , b

k
i , i 2

f1, :::, kLg, and cki , i 2 f1, :::, kMg, such that the discretized weak formulationð
X
Tðuk, vk, pkÞ : rgþ �vk � g dx ¼

ð
X
ðrukÞ>lk � gþ ðrrkÞ>Nrðuk, rkÞ � g dx, (4.6a)

h@tuk , fiH1 þ
ð
X
divðuk � vkÞ � f dx ¼ �

ð
X
Cðuk, rkÞrlk : rfþ Suðuk, rk, lkÞ � f dx,

(4.6b)ð
X
lk � h dx ¼

ð
X
ceruk : rhþ ce�1WuðukÞ � hþNuðuk, rkÞ � h dx, (4.6c)

h@trk , niH1 þ
ð
X
divðrk � vkÞ � n dx ¼ �

ð
X
Dðuk, rkÞrNrðuk, rkÞ : rn dx

�
ð
X
Srðuk, rk, lkÞ � n dx þ

ð
C
SCðuk, rkÞ � n dS,

(4.6d)
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is satisfied for all test functions g 2 H1ðX;RdÞ, f, h 2 Wk, and n 2 Zk: Note that we

only need to detect aki , b
k
i , i 2 f1, :::, kLg and cki , i 2 f1, :::, kMg, such that the equations

(4.6b)–(4.6d) are fulfilled. Then (4.6a) holds automatically due to the construction of vk
and pk. Of course, also the initial conditions have to be approximated. We thus demand
that

ukð0Þ ¼ PWkðu0Þ 2 Wk, rkð0Þ ¼ PZkðr0Þ 2 Zk in X: (4.7)

In the following, we write ak :¼ ðak1, :::, akkLÞ, bk :¼ ðbk1, :::, bkkLÞ, and ck :¼ ðck1, :::, ckkMÞ to
denote the coefficient vectors. Plugging the ansatz (4.2) into the discrete formulations
(4.6 b)–(4.6d), and testing with w1, :::,wkL and z1, :::, zkM, respectively, we conclude that

the vector ðak , bk , ckÞ> needs to satisfy a system of kðLþMÞ nonlinear ordinary differ-
ential equations and kL algebraic equations. By means of the vector-valued algebraic

equation resulting from (4.6c), we can replace the variable bk appearing in the right-
hand side of the vector-valued ODEs resulting from (4.6 b) and (4.6d) by an expression

depending only on ak and ck to eventually obtain a closed system of ODEs for ðak, ckÞ>:
In fact, notice that from (4.7) we naturally obtain the initial conditions

ak½ 
ið0Þ ¼ aki ð0Þ ¼ ukð0Þ , wi
� �

L2 ¼ u0 , wið ÞL2 , i 2 f1, :::, kLg, (4.8)

ck½ 
ið0Þ ¼ cki ð0Þ ¼ rkð0Þ , zið ÞL2 ¼ r0 , zið ÞL2 , i 2 f1, :::, kMg: (4.9)

In particular, this entails that

kukð0ÞkH1 ¼
�����
XkL
i¼1

ak½ 
ið0Þ wi

�����
H1

� ku0kH1 , krkð0ÞkL2 ¼
�����
XkM
i¼1

ck½ 
ið0Þ zi

�����
L2

� kr0kL2 :

Recalling the assumptions A2–A8, we notice that the right-hand side of the ODE system

depends continuously on the unknown variables ðak , ckÞ>: Hence, the Cauchy–Peano

theorem implies the existence of at least one local solution ðak , ckÞ> : ½0,T
k Þ \ ½0,T
 !

R
kðLþMÞ with T

k > 0: Without loss of generality, we assume that T
k � T and that

ðak , ckÞ> is the right-maximal solution of the ODE system mentioned above, that is, T
k

is chosen as large as possible.

We can now reconstruct bk by means of the vector-valued algebraic equation as a

function bkð Þ> : 0,T
k½ Þ ! R

kL: Consequently, by (4.2) and the construction of vk, pkð Þ,
we obtain functions

uk, lk 2 C1 0,T
k½ Þ;C1 �X;RL

� �	 

, rk 2 C1 0,T

k½ Þ;C1 �X;RM
� �	 


,

vk 2 C1 0,T
k½ Þ;H2 X;Rd

� �	 

, pk 2 C1 0,T

k½ Þ;H1 Xð Þ� �
,

(4.10)

which satisfy the discretized weak formulation (4.6) on the time interval ½0,T
k Þ:

In Step 3, we will see that the solution ðak , ckÞ> of the ODE system mentioned above
can actually be extended onto the whole time interval ½0,T
: Then the functions uk, lk,
rk, vk, and pk given by (4.10) satisfy the discretized weak formulation (4.6) not only on
½0,T

k Þ but on the whole time interval ½0,T
:
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Step 2: A priori estimates. Now, we intend to establish a priori estimates to bound our
approximate solution ðuk, lk, rk, vk, pkÞ uniformly with respect to the index k in suitable
norms. We claim that there exist constants CAP,C0

AP > 0 such that, for all k 2 N and all
Tk < T

k ,

kukkL1 0,Tk;H1ð Þ\L2 0,Tk;H3ð Þ
þ krkkL1 0,Tk;L2ð Þ\L2 0,Tk;H1ð Þ þ krkkL4 0,Tk;L2Cð Þ
þ klkkL2 0,Tk;H1ð Þ þ kvkkL2 0,Tk;L2ð Þ þ

��� ffiffiffiffiffiffiffiffiffiffiffiffi
g ukð Þp

Dvk
���2
L2 0,Tk;L2ð Þ þ kpkkL4=3 0,Tk;L2ð Þ

þ kWu ukð ÞkL4 0,Tk;L2ð Þ\L2 0,Tk;L6ð Þ þ krNr uk ,rkð ÞkL2 0,Tk;L2ð Þ
þ kdiv uk � vkð ÞkL4=3 0,Tk;L3=2ð Þ þ kdiv rk � vkð ÞkL1 0,Tk;L1ð Þ

� CAP,

(4.11)

and

kukkH1ð0,Tk;ðH1Þ0Þ þ krkkW1, 4=3ð0,Tk;ðH1Þ0Þ þ kvkkL2ð0,Tk;H1Þ
þ kdivðuk � vkÞkL2ð0,Tk;L3=2Þ þ kdivðrk � vkÞkL1ð0,Tk;L3=2Þ � C0

APð1þ g�1
0 Þ: (4.12)

We point out that the constants CAP and C0
AP depend only on the initial data and the

constants introduced in Section 3.3 except for g0. In particular, CAP and C0
AP are thus

independent of k and Tk.
In the following proof of these estimates, we omit the subscript k to provide a cleaner

presentation. In particular, with some abuse of notation, we will also just write T
instead of Tk.

Step 2.1: Energy estimate. To handle both cases A8.1 and A8.2 simultaneously, we intro-
duce constants a and b in the following way:

a :¼ 1, b :¼ h0 if A8:1 holds,

a :¼ 0, b :¼ 1 if A8:2 holds:

(
(4.13)

For every t 2 0,T½ 
, we choose u tð Þ as a strong solution to the following problem

div u tð Þð Þ ¼ Sv u tð Þ, r tð Þð Þ in X,

u tð Þ ¼ 1
jCj
Ð
XSv u tð Þ, r tð Þð Þ dx� �

n ¼: r on C,

(

whose solvability is a direct consequence of Lemma 3.2 with f ¼ Sv u tð Þ, r tð Þð Þ: This

lemma further implies u 2 C1 0,T½ 
;W1, q
� �

for all q 2 1,1ð Þ as well as the estimate

ku tð ÞkW1, q � CkSv u tð Þ,r tð Þð ÞkLq � C: (4.14)

Notice that condition (3.2) in Lemma 3.2 is fulfilled as it holds thatð
C
r � n dS ¼ 1

jCj
ð
X
Sv u tð Þ, r tð Þð Þ dx

� �ð
C
n � n dS ¼

ð
X
Sv u tð Þ, r tð Þð Þ dx:

We now recall from Assumption A4 that

Nrðu, rÞ ¼ vrr� Bu� b a:e: in X� ð0, TÞ:
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Since uðtÞ 2 Wk for all t 2 ½0,T
, it is straightforward to check that BuðtÞ 2 Zk for all
t 2 ½0,T
: Consequently, it holds that NrðuðtÞ, rðtÞÞ 2 Zk for all t 2 ½0,T
:
Testing (4.6a) by v � u, (4.6 b) by l, (4.6c) by �@tu, (4.6d) by Nrðu, rÞ, adding the

resulting equalities, and using the decompositions (3.21), (4.4) and (4.5), we infer the
discrete energy identity

d
dt

Eðu, rÞ þ
ð
X
2gðuÞjDvj2 þ �jvj2 dx

þ
ð
X
Cðu, rÞrl : rlþ Dðu, rÞrNrðu, rÞ : rNrðu, rÞ dx þ

ð
C
Kvrjrj2 dS

¼
ð
X
Kuðu, rÞ � l� huðu, rÞl � l� Srðu, r, lÞ �Nrðu, rÞ dx

�
ð
X
ðruÞuþ uSvðu, rÞ½ 
 � lþ ðrrÞuþ rSvðu, rÞ½ 
 �Nrðu, rÞ dx

þ
ð
C
KðKCðu, rÞ � Nrðu, rÞ þ r � Grðu, rÞÞ dSþ

ð
X
2gðuÞDv : Duþ �v � u dx

(4.15)

on ½0,T
, where the energy E is given by (1.5). We point out that divðv � uÞ ¼ 0 is
essential in the derivation of (4.15).
Using the parameter a introduced in (4.13) and recalling the condition (3.32) in

A8.1, we derive the estimate

d
dt

Eðu, rÞ þ
ð
X
2gðuÞjDvj2 þ �jvj2 dx þ

ð
X
a h0jlj2 dx

þ
ð
X
Cðu, rÞrl : rlþ Dðu, rÞrNrðu, rÞ : rNrðu, rÞ dx þ

ð
C
Kvrjrj2 dS

�
ð
X
Kuðu, rÞ � l dx

����
����þ ð1� aÞ

ð
X
huðu, rÞl � l dx

����
����þ

ð
X
Srðu, r, lÞ �Nrðu, rÞ dx

����
����

þ
ð
X
ðruÞuþ uSvðu, rÞ½ 
 � l dx

����
����þ

ð
X
ðrrÞuþ rSvðu, rÞ½ 
 �Nrðu, rÞ dx

����
����

þ
ð
C
KðKCðu, rÞ �Nrðu, rÞ þ r � Grðu, rÞÞ dS

����
����þ

ð
X
2gðuÞDv : Duþ �v � u dx

����
����:
(4.16)

Using Young’s and H€older’s inequalities, and (4.14) with q¼ 2, we infer thatð
X
2gðuÞDv : Duþ �v � u dx

����
���� � ��� ffiffiffiffiffiffiffiffiffiffi

gðuÞ
p

Dv
���2
L2
þ �

2
kvk2L2 þ C on 0,T½ 
: (4.17)

To estimate the boundary integral, we employ the bounds on Gr and Nr demanded in
A4, as well as the trace theorem to infer thatð

C
KðKCðu, rÞ � Nrðu, rÞ þ r � Grðu, rÞÞ dS

����
���� � Kvr

2
krk2L2C þ Cð1þ kuk2H1Þ (4.18)

on ½0,T
: Having this bound at our disposal, we next estimate the integrals on the
right-hand side of (4.16) that depend on l: Recalling the decomposition (3.21) for Su
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presented in A5, we use H€older’s and Young’s inequalities along with (3.24) to infer
that ð

X
Kuðu, rÞ � l dx

����
����þ ð1� aÞ

ð
X
huðu, rÞl � l dx

����
����

� 1
6
bklk2L2 þ Cðkuk2L2 þ krk2L2 þ 1Þ:

(4.19)

Proceeding similarly and using the decomposition (3.22) from A5 as well as the esti-
mates (3.15) and (3.25), we further deduce thatð

X
Srðu, r, lÞ � Nrðu, rÞ dx

����
���� � 1

6
bklk2L2 þ Cðkuk2L2 þ krk2L2 þ 1Þ on 0,T½ 
: (4.20)

Since (4.14) holds for q ¼ d þ 1, and W1, dþ1ðX;RdÞ is continuously embedded in

CbðX;RdÞ, we know that

u 2 C1ð 0,T½ 
;CbðX;RdÞÞ with kuðtÞkCb
� C for all t 2 0,T½ 
: (4.21)

Hence, using A4 and A6, as well as Young’s and H€older’s inequalities, we infer thatð
X
ðruÞuþ uSvðu, rÞ½ 
 � l dx

����
���� � 1

6
bklk2L2 þ Ckuk2H1 : (4.22)

Recalling A4, we use the chain rule to derive the identity

rr ¼ ðNrrðu,rÞÞ�1ðrNrðu, rÞ þGruðu, rÞruÞ in X� ð0,TÞ: (4.23)

According to (3.17) in A4, the operator norm of the matrix ðNrrðu,rÞÞ�1 is bounded
by v�1

r : We now use (3.13) from A4 to bound Gruðu, rÞ, which leads to the estimate

krrkL2 � v�1
r ðkrNrðu,rÞkL2 þ DGkrukL2Þ on 0,T½ 
: (4.24)

We can thus use A4, A6 and (4.21) along with Young’s inequality to conclude thatð
X
ðrrÞuþ rSvðu, rÞ½ 
 �Nrðu, rÞ dx

����
���� � D0v2r

2
krrk2L2 þ CðkNrðu,rÞk2L2 þ krk2L2Þ

� D0

2
krNrk2L2 þ Cð1þ kuk2H1 þ krk2L2Þ

(4.25)

on the interval ½0,T
:
If A8.2 holds (i.e., a¼ 0 and b¼ 1), we still have to derive an estimate for the

L2-norm of l since it cannot be absorbed by the left-hand side. We test (3.37c) with l,
and we use (3.15) and Young’s inequality to infer that

klk2L2 � C0krlk2L2 þ Cð1þ kuk2H1 þ krk2L2Þ on 0,T½ 
 if A8:2 holds: (4.26)

We now combine the inequalities (4.17)–(4.20), (4.22), (4.25) and (4.26) to estimate the
right-hand side of the discrete energy identity (4.16). In the resulting inequality, we
observe that several terms on the right-hand side can be absorbed by the left-hand side.
Recalling the definition of the energy E and integrating with respect to time, we eventu-
ally obtain for all t 2 ½0,T
,
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ð
X
ce�1WðuðtÞÞ þ ce

2
jruðtÞj2 þ vr

2
jrðtÞj2 � GðuðtÞ, rðtÞÞ dx

þ
ðt
0

��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðuðsÞÞ

p
DvðsÞ

���2
L2
þ �

2
kvðsÞk2L2 þ

Kvr
2

krðsÞk2L2C ds

þ
ðt
0

ah0
2

klðsÞk2L2 þ
C0

2
krlðsÞk2L2 þ

D0

2
krNrðuðsÞ,rðsÞÞk2L2 ds

� CT þ C
ðt
0
kuðsÞk2H1 þ krðsÞk2L2 ds:

(4.27)

We next use the inequality (3.11) from A4 along with Young’s inequality to derive the
estimate ð

X
GðuðtÞ, rðtÞÞ dx

����
���� �

ð
X

CG

2d
uðtÞj j2 þ 2CGd rðtÞj j2 þ CG dþ 1

4d
þ 1

� �
dx

for all t 2 ½0,T
 and all d > 0: Choosing d ¼ vr=ð8CGÞ, using the growth condition
(3.31) from A8, and recalling A9, we infer thatð

X
GðuðtÞ, rðtÞÞ dx

����
���� �

ð
X

4C2
G

vr
uðtÞj j2 þ vr

4
rðtÞj j2 dx þ C

�
ð
X

c
2e

WðuðtÞÞ þ vr
4

rðtÞj j2 dx þ C

for all t 2 ½0,T
: Invoking the growth condition (3.31) once more, we find that for all
t 2 ½0,T
,

min
cAW

2e
,
vr
4
,
ce
2

� �
ðkuðtÞk2H1 þ krðtÞk2L2Þ

� C þ
ð
X
ce�1WðuðtÞÞ þ ce

2
jruðtÞj2 þ vr

2
jrðtÞj2 � GðuðtÞ, rðtÞÞ dx:

Using this estimate to bound the left-hand side in (4.27) from below, we finally con-
clude that

kuðtÞk2H1 þ krðtÞk2L2 � C þ C
ðt
0
kuðsÞk2H1 þ krðsÞk2L2 ds (4.28)

for all t 2 ½0,T
: Invoking Gronwall’s lemma, we thus obtain the uniform estimate

kuk2L1ð0,T;H1Þ þ krk2L1ð0,T;L2Þ � C: (4.29)

Using this inequality to bound the right-hand side of (4.27), invoking (4.24), and add-
itionally using (4.26) if A8.2 holds, we infer that

kvk2L2ð0,T;L2Þ � C,
��� ffiffiffiffiffiffiffiffiffiffi

gðuÞ
p

Dv
���2
L2ð0,T;L2Þ

� C, (4.30)

krk2L2ð0,T;H1Þ þ krk2L2ð0,T;L2CÞ þ klk2L2ð0,T;H1Þ þ krNrðu,rÞk2L2ð0,T;L2Þ � C: (4.31)

Using the lower bound on g from A3 as well as Korn’s inequality (3.3), we directly con-
clude that
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kvk2L2ð0,T;H1Þ � Cð1þ g�1
0 Þ: (4.32)

Moreover, applying a trace estimate presented in [73, Thm. II.4.1] (with the parameters
therein being chosen as r ¼ q ¼ 2,m ¼ 1, n ¼ d, k ¼ 0), we infer that

krkL2C � C krkL2 þ krk1=2
L2

krk1=2
H1

	 

on 0,T½ 
, (4.33)

and in combination with (4.30), this leads to the uniform bound

krkL4 0,T;L2Cð Þ � C: (4.34)

Step 2.2: An estimate for the pressure. We next want to derive a uniform estimate on the
pressure p. To this end, we rewrite (3.37a) asð

X
p divg dx ¼

ð
X
2g uð ÞDv þ k uð ÞSv u, rð ÞI� �

: rg dx

þ
ð
X

�v � ruð Þ>l� rrð Þ>Nr u, rð Þ
	 


� g dx
(4.35)

on 0,T½ 
 for every g 2 H1 X;Rd
� �

: Then, by invoking Lemma 3.2, we infer the existence
of a function q 2 C 0,T½ 
;H1

� �
such that for all t 2 0,T½ 
, q tð Þ is a strong solution to

the system

div q tð Þ� � ¼ p tð Þ in X,

q tð Þ ¼ 1
jCj
Ð
Xp tð Þ dx� �

n on C:

8<
:

We point out that the complementary condition (3.2) is fulfilled asð
C
qðtÞ � n dS ¼ 1

jCj
ð
X
pðtÞ dx

� �ð
C
n � n dS ¼

ð
X
pðtÞ dx for all t 2 0,T½ 
:

In particular, according to Lemma 3.2, we have the estimate

kqkH1 � CkpkL2 on 0,T½ 
: (4.36)

Then, we choose g ¼ q in (4.35) and, invoking A3, A4 and A6, using the uniform esti-
mates (4.29), (4.30), (4.36) as well as H€older’s and Young’s inequalities, we derive the
estimate

kpk2L2 � C k ffiffiffiffiffiffiffiffiffiffi
g uð Þ

p
Dvk2L2 þ kvk2L2 þ kSv u,rð Þk2L2

	
þ kruk2L2klk2L3 þ krrk2L2kNr u,rð Þk2L3



� C

(4.37)

on ½0,T
: Recalling A4 and the uniform estimate (4.29), we notice that

kNrðu,rÞkL1ð0,T;L2Þ � C:

From the Gagliardo–Nirenberg inequality (3.4), we thus deduce the estimate

kNrðu, rÞk4L4ð0,T;L3Þ � C
ðT
0
kNrðu, rÞk2L2kNrðu, rÞk2H1 dt

� CkNrðu, rÞk2L1ð0,T;L2ÞkNrðu,rÞk2L2ð0,T;H1Þ � C:

(4.38)
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Combining (4.37) and (4.38), we eventually conclude the uniform bound

kpk4=3
L4=3 0,T;L2ð Þ

� C
ðT
0

k ffiffiffiffiffiffiffiffiffiffi
g uð Þ

p
Dvk4=3

L2
þ kvk4=3

L2
þ kruk4=3

L2
klk4=3

L3
þ krrk4=3

L2
kNr u, rð Þk4=3L3

þ 1
	 


dt

� C k ffiffiffiffiffiffiffiffiffiffi
g uð Þ

p
Dvk4=3

L2 0,T;L2ð Þ þ kvk4=3
L2 0,T;L2ð Þ þ kruk4=3

L4 0,T;L2ð Þklk
4=3

L2 0,T;L3ð Þ
�

þ krrk4=3
L2 0,T;L2ð ÞkNr u,rð Þk4=3

L4 0,T;L3ð Þ þ 1
�

� C:

(4.39)

Step 2.3: Higher regularity for the phase-field. To establish higher order uniform a priori
estimates on u, we test (4.6c) with �Du and integrate the resulting equation with
respect to time. This is actually allowed since the basis functions wi, i ¼ 1, :::, kL are
contructed from eigenfunctions of the eigenvalue problem (4.1) and thus, �DuðtÞ 2 Wk

for all t 2 ½0,T
: Next, we integrate the resulting equation with respect to time and after
further integrating by parts, we obtain

ce
ðT
0
kDuk2L2 dt þ ce�1

ðT
0

ð
X
Wð1Þ

uuðuÞru : ru dðx, tÞ

¼
ðT
0

ð
X
� l � Duþ ce�1Wð2Þ

u ðuÞ � Duþ Nuðu, rÞ � Du dðx, tÞ:

Note that the second integral on the left-hand side is nonnegative as Wð1Þ
uuðuÞ is a posi-

tive definite matrix due to the convexity of Wð1Þ: Applying Young’s inequality on the

right-hand side, using (3.15) from A4, and recalling that Wð2Þ
u is Lipschitz continuous

(see A8), we derive the estimate

ce
2

ðT
0
kDuk2L2 dt � C

ðT
0
ð1þ klk2L2 þ kuk2L2 þ krk2L2Þ dt � C:

Invoking elliptic regularity theory and the uniform estimates (4.29) and (4.31), we con-
clude that

kukL2ð0,T;H2Þ � CðkDukL2ð0,T;L2Þ þ kukL2ð0,T;L2ÞÞ � C: (4.40)

We next test (4.6c) with D2u and integrate the resulting equation with respect to time.
Arguing similarly as above, D2u is indeed an admissible test function due to the con-
struction of the basis functions wi, i ¼ 1, :::, kL: After integrating by parts, using the
chain rule, and recalling that Nuu ¼ �Guu,Nru ¼ �Gru due to A4, we have

ce
ðT
0
krDuk2L2 dt ¼

ðT
0

ð
X
ðrl : rDu� ce�1WuuðuÞru : rDu

�Guuðu, rÞru : rDu� Gruðu, rÞrr : rDuÞ dx dt
� CðkrlkL2ð0,T;L2Þ þ kWuuðuÞkL2ð0,T;L1ÞkrukL1ð0,T;L2Þ
þ krukL2ð0,T;L2Þ þ krrkL2ð0,T;L2ÞÞkrDukL2ð0,T;L2Þ:

(4.41)
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If A8.1 holds, we use Agmon’s inequality (3.5) to obtain the bound

kWuuðuÞk2L2ð0,T;L1Þ � C þ C
ðT
0
kuk4L1 dt � C þ C

ðT
0
kuk2H1kuk2H2 dt

� C þ Ckuk2L1ð0,T;H1Þkuk2L2ð0,T;H2Þ � C:

On the other hand, if A8.2 holds, the bound kWuuðuÞkL2ð0,T;L1Þ � C is trivially satisfied.

Applying Young’s inequality on the right-hand side of (4.41), we thus infer that

krDuk2
L2 0,T;L2ð Þ � C klk2

L2 0,T;H1ð Þ þ kuk2
L1 0,T;H1ð Þ þ krk2

L2 0,T;H1ð Þ
	 


� C:

Using elliptic regularity theory, as well as the uniform estimates (4.29) and (4.31), we
eventually obtain

kukL2ð0,T;H3Þ � CðkrDukL2ð0,T;L2Þ þ krukL2ð0,T;L2ÞÞ � C: (4.42)

Step 2.4: Estimates for the gradient of the potential. Using interpolation (Lemma 3.1)
and Sobolev’s embedding theorem, we obtain the continuous embedding

L1ð0,T;H1ðXÞÞ \ L2ð0,T;H3ðXÞÞ ,! Ljð0,T; L 6j
j�8ðXÞÞ (4.43)

for all j 2 ð8,1Þ: This entails that
u 2 L20ð0,T; L10ðXÞÞ \ L10ð0,T; L30ðXÞÞ:

Recalling A8, for general exponents q and r still to be chosen, we derive the estimate

kWuðuÞkqLqð0,T;LrÞ � C
ðT
0
ðk jujq�1 kqLr þ 1Þ dt � C

ðT
0
ðkukqðq�1Þ

Lrðq�1Þ þ 1Þ dt:

Choosing ðq, rÞ ¼ ð4, 2Þ and ðq, rÞ ¼ ð2, 6Þ, respectively, and recalling that q � 4, we
directly conclude that

kWuðuÞkL4ð0,T;L2Þ\L2ð0,T;L6Þ � C: (4.44)

Step 2.5: Estimates for the convection terms. We now use the estimates established above
to derive uniform bounds on the convection terms divðu� vÞ and divðr� vÞ:
Recalling the decompositions (4.4) and (4.5), and using A6, Lemma 3.1, H€older’s

inequality and the continuous embedding H1 ,! L6, we infer the uniform bounds

kdiv u� vð Þk4=3L4=3ð0,T;L3=2Þ � C
ðT
0
kruk4=3

L6
kvk4=3

L2
þ kuk4=3

L3=2
dt

� C
ðT
0
kuk2=3

H1 kuk2=3H3 kvk4=3L2
þ kuk4=3

L3=2
dt

� C kuk2=3
L1 0,T;H1ð Þkuk

2=3

L2 0,T;H3ð Þkvk
4=3

L2 0,T;L2ð Þ þ 1
� �

� C,

(4.45)

kdiv r� vð ÞkL1ð0,T;L1Þ � C
ðT
0
krrkL2kvkL2 þ krkL1 dt � C, (4.46)

kdiv u� vð Þk2L2ð0,T;L3=2Þ � C
ðT
0
kruk2L2kvk2L6 þ kuk2L3=2 dt � C 1þ g�1

0

� �
, (4.47)
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kdivðr� vÞkL1ð0,T;L3=2Þ � C
ðT
0
krrkL2kvkL6 þ krkL3=2 dt � Cð1þ g�1

0 Þ12: (4.48)

Step 2.6: Estimates for the time derivatives. Let f 2 L2ð0,T;H1ðX;RLÞÞ, n 2 L4ð0,T;
H1ðX;RMÞÞ be arbitrary, and let Pf and Pn denote the projected functions given by

Pfðx, tÞ ¼ PWkðfðtÞÞ
 �ðxÞ, Pnðx, tÞ ¼ PZkðnðtÞÞ

 �ðxÞ for almost all ðx, tÞ 2 X� ð0,TÞ: (4.49)

We thus have the estimates

kPfðtÞkH1 � kfðtÞkH1 , kPnðtÞkH1 � knðtÞkH1 (4.50)

for almost all t 2 ½0,T
: Moreover, since the families fwigi2N and fzigi2N are orthonor-

mal bases of L2ðX;RLÞ and L2ðX;RMÞ, respectively, we infer that

@tu , fð ÞL2 ¼ @tu , Pfð ÞL2 , @tr , nð ÞL2 ¼ @tr , Pnð ÞL2 on 0,T½ 
:
Now we test (4.6 b) with Pf and we integrate with respect to time from 0 to T. Using
A2, A5, A6, the uniform estimates (4.29), (4.31) and (4.47), and the continuous embed-

ding L
3
2 ,! ðH1Þ0, we derive the estimate

jh@tu , fiL2ð0,T;H1Þj ¼
ðT
0

@tu , Pfð ÞL2 dt
����

����
� C

ðT
0
kdivðu� vÞkðH1Þ0kPfkH1 þ krlkL2kPfkL2 þ kSuðu, r,lÞkL2kPfkL2 dt

� CkfkL2ð0,T;H1Þ

ðT
0
kdivðu� vÞk2L3=2 þ klk2H1 þ kuk2L2 þ krk2L2 þ 1 dt

 !1
2

� Cð1þ g�1
0 Þ12kfkL2ð0,T;H1Þ:

Hence, taking the supremum over all f 2 L2ð0,T;H1Þ with kfkL2ð0,T;H1Þ � 1, we obtain

the uniform bound

k@tukL2ð0,T;ðH1Þ0Þ � Cð1þ g�1
0 Þ12: (4.51)

To estimate the time derivative of r we argue similarly. Namely, we test (4.6d) with Pn

and integrate with respect to time from 0 to T. Using A2, A5, A6, the uniform estimates
(4.29), (4.31) and (4.47), we obtain

jh@tr , niL4ð0,T;H1Þj ¼
ðT
0

@tr , Pnð ÞL2 dt
����

����
� C

ðT
0
ðkdivðr� vÞkðH1Þ0kPnkH1 þ krNrðu,rÞkL2kPnkL2

þ kSrðu,r, lÞkL2kPnkL2 þ kSCðu,rÞkL2CknkL2CÞ dt

� CknkL4ð0,T;H1Þ

�ðT
0
kdivðr� vÞk4

3

ðH1Þ0 þ krNrðu,rÞk4
3

L2

þkSrðu,r, lÞk4
3

L2
þ kSCðu, rÞk4

3

L2C
dt

�3
4

� Cð1þ g�1
0 Þ12knkL4ð0,T;H1Þ:
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Taking the supremum over all n 2 L4ð0,T;H1Þ with knkL4ð0,T;H1Þ � 1 we eventually get

k@trkL4=3ð0,T;ðH1Þ0Þ � Cð1þ g�1
0 Þ12: (4.52)

Step 3: Extension onto the whole time interval ½0,T
: As the constant CAP is inde-
pendent of the time Tk, we will use the a priori estimate (4.11) to extend the approxi-
mate solution ðuk, lk, rk, vk, pkÞ onto the whole time interval ½0,T
: To see this, we
recall from Step 1 that the coefficients ðak, ckÞ are determined as a solution of a nonlin-
ear ODE system. Using (4.2), we infer that for any Tk 2 ½0,T

k Þ, all t 2 ½0,Tk
, and all
i 2 f1, :::, kLg, and j 2 f1, :::, kMg,

jaki ðtÞj þ jckj ðtÞj ¼ ukðtÞ , wi
� �

L2
�� ��þ rkðtÞ , zj

� �
L2

��� ���
� kukðtÞkL1ð0,Tk;L2Þ þ krkðtÞkL1ð0,Tk;L2Þ � CAP:

This means that the solution ðak , ckÞ> is bounded on the time interval ½0,T
k Þ and hence, it

can be extended beyond T
k : However, as ðak , ckÞ> was assumed to be a right-maximal

solution, this is a contradiction. We thus conclude that the solution ðak , ckÞ> actually exists

on the whole time interval ½0,T
: As the coefficients bk can be reconstructed from ðak , ckÞ>
via the vector-valued algebraic equation mentioned in Step 1, we further infer that bk also
exists on ½0,T
: This directly implies that the functions uk, lk, rk, vk and pk exist on ½0,T

and satisfy the discretized weak formulation (4.6) on ½0,T
: As the choice of Tk did not
play any role in the proof of the a priori estimates presented in Step 2, it is clear that the a
priori estimate (4.11) holds true with Tk and T

k being replaced by the final time T.

Step 4: Convergence to a weak solution. Exploiting the a priori estimates in Step 2,
and using Sobolev’s embedding theorem and interpolation (Lemma 3.1), we conclude
that there exists a quintuplet ðu, l, r, v, pÞ such that the sequence of approximate solu-
tions fðuk ,lk ,rk , vk , pkÞgk2N satisfies

uk ! u weakly in H1ð0,T; ðH1Þ0Þ \ L2ð0,T;H3Þ,
weakly- in L1ð0,T;H1Þ, a:e: in Q,

and strongly in Cð 0,T½ 
;HsÞ \ L2ð0,T;H2þsÞ for all s 2 0, 1Þ,½
(4.53a)

ukjC ! ujC strongly in Cð 0,T½ 
; L2CÞ, and a:e: on R, (4.53b)

rk ! r weakly in W1, 43ð0,T; ðH1Þ0Þ \ L2ð0,T;H1Þ,
weakly- in L1ð0,T; L2Þ, a:e: in Q,

and strongly in Cð 0,T½ 
; ðH1Þ0Þ \ L2ð0,T;HsÞ for all s 2 0, 1Þ,½
(4.53c)

rkjC ! rjC weakly in L4ð0,T; L2CÞ, strongly in L2ð0,T; L2CÞ,
and a:e: on R,

(4.53d)

lk ! l weakly in L2ð0,T;H1Þ, (4.53e)

vk ! v weakly in L2ð0,T;H1Þ, (4.53f)

pk ! p weakly in L
4
3ð0,T; L2Þ, (4.53g)
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as k ! 1, along a nonrelabeled subsequence. We point out that the strong convergen-
ces in (4.53a) and (4.53c) are a direct consequence of the Aubin–Lions–Simon lemma
(cf. [77, Theorem II.5.16]). Then the strong convergences in (4.53 b) and (4.53d) follow
from (4.53a) and (4.53c) by means of the trace theorem. In particular, this entails that
the limit ðu, l, r, v, pÞ satisfies the regularity condition (3.36), and we further know that
u 2 L2ð0,T;H3Þ: Recalling the assumptions A2–A7, we infer from (4.53) the almost
everywhere convergence properties

Cðuk, rkÞ ! Cðu, rÞ, Dðuk, rkÞ ! Dðu, rÞ a:e: in Q, (4.54a)

gðukÞ ! gðuÞ, kðukÞ ! kðuÞ a:e: in Q, (4.54b)

Nuðuk, rkÞ ! Nuðu, rÞ, Nrðuk, rkÞ ! Nrðu, rÞ a:e: in Q, (4.54c)

rNrðuk, rkÞ ! rNrðu, rÞ, Svðuk, rkÞ ! Svðu, rÞ a:e: in Q, (4.54d)

WuðukÞ ! WuðuÞ a:e: in Q, (4.54e)

SCðuk, rkÞ ! SCðu, rÞ a:e: on R, (4.54f)

Kuðuk, rkÞ ! Kuðu, rÞ, huðuk, rkÞ ! huðu, rÞ a:e: in Q, (4.54g)

Krðuk, rkÞ ! Krðu, rÞ, hrðuk, rkÞ ! hrðu, rÞ a:e: in Q, (4.54h)

after another subsequence extraction. From (4.54c), (4.54d) and the a priori estimate
(4.11), we further conclude that,

WuðukÞ ! WuðuÞ, weakly in L4ð0,T; L2Þ \ L2ð0,T; L6Þ, (4.55)

rNrðuk, rkÞ ! rNrðu, rÞ weakly in L2ð0,T; L2Þ, (4.56)

as k ! 1, up to subsequence extraction. Using the decomposition (4.4), and the con-
vergences (4.53a), (4.53f), and (4.54d), it is straightforward to check that

divðuk � vkÞ ! divðu� vÞ weakly in L2 0,T; L
3
2

� �
(4.57)

as k ! 1: Moreover, due to the a priori estimate (4.12), the Banach–Alaoglu theorem

implies that there exists a function s 2 L1 0,T; L
3
2

� �
such that

divðrk � vkÞ ! s weakly in L1 0,T; L
3
2

� �
:

Let now n 2 C1
c ðQÞ be an arbitrary test function. Performing an integration by parts,

we obtain ð
Q
divðrk � vkÞ � n dðx, tÞ ¼ �

ð
Q
ðrk � vkÞ : rn dðx, tÞ:

Due to (4.53c) and (4.53f), we may pass to the limit on the right-hand side. This yieldsð
Q
divðrk � vkÞ � n dðx, tÞ ! �

ð
Q
ðr� vÞ : rn dðx, tÞ

and after another integration by parts, we conclude that divðrk � vkÞ ! divðr� vÞ as
k ! 1 in the sense of distributions. Because of uniqueness of the limit, we thus have
s ¼ divðr� vÞ almost everywhere in Q and hence,
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divðrk � vkÞ ! divðr� vÞ weakly in L1 0,T; L
3
2

� �
: (4.58)

Now, let d 2 C1ð½0,T
Þ and g 2 H1ðX;RdÞ be arbitrary, and for any fixed k 2 N, let
i 2 f1, :::, kLg, and j 2 f1, :::, kMg be arbitrary. We test the discretized weak formula-
tion (4.6) with dg, dwi and dzj and integrate with respect to time from 0 to T. This
yieldsð

Q
Tðuk, vk, pkÞ : drgþ �vk � dg dðx, tÞ

¼
ð
Q
ðrukÞ>lk � dgþ ðrrkÞ>Nrðuk, rkÞ � dg dðx, tÞ, (4.59a)

ðT
0
h@tuk , wiiH1d dt þ

ð
Q
divðuk � vkÞ � dwi dðx, tÞ

¼ �
ð
Q
Cðuk, rkÞrlk : drwi þ Suðuk, rk, lkÞ � dwi dðx, tÞ,

(4.59b)

ð
Q
lk � dwi dðx, tÞ ¼

ð
Q
ceruk : drwi þ ce�1WuðukÞ � dwi þ Nuðuk, rkÞ � dwi dðx, tÞ,

(4.59c)ðT
0
h@trk , zjiH1d dt þ

ð
Q
divðrk � vkÞ � dzj dðx, tÞ

¼ �
ð
Q
Dðuk, rkÞrNrðuk, rkÞ : drzj dðx, tÞ

�
ð
Q
Srðuk, rk, lkÞ � dzj dðx, tÞ þ

ð
R
SCðuk, rkÞ � dzj dS dt:

(4.59d)

Invoking the convergence properties (4.53) and (4.54), and using Lebesgue’s dominated
convergence theorem, we deduce that

gðukÞdrg ! gðuÞdrg, kðukÞdrg ! kðuÞdrg in L2ðQÞ, (4.60a)

Cðuk, rkÞdrwi ! Cðu, rÞdrwi, Dðuk, rkÞdrzj ! Dðu, rÞdrzj in L2ðQÞ, (4.60b)

huðuk , rkÞ>dwi ! huðu,rÞ>dwi, hrðuk ,rkÞ>dzj ! hrðu,rÞ>dzj in L2ðQÞ, (4.60c)

as k ! 1: To establish a similar convergence result for terms like ½Nrðuk, rkÞ
j½dg
i for
all i 2 f1, :::, dg and j 2 f1, :::,Mg, we intend to employ a generalized version of
Lebesgue’s dominated convergence theorem, see [78, Sec. 3.25]. To this end, for any i 2
f1, :::, dg and j 2 f1, :::,Mg, we first recall that

Nrðuk ,rkÞ
 �

j dg½ 
i ! Nrðu,rÞ½ 
j dg½ 
i a:e: in Q as k ! 1,

j Nrðuk ,rkÞ
 �

j dg½ 
ij2 � B2
Nð ukj j2 þ rkj j2 þ 1Þ dgj j2 ¼: gk a:e: in Q for all k 2 N,

due to (4.54c) and A4. Using the convergences in (4.53a) and (4.53c), a straightforward
computation reveals that

gk ! g :¼ B2
Nðjuj2 þ jrj2 þ 1Þ dgj j2 in L1ðQÞ:
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Hence, we apply Lebesgue’s generalized convergence theorem to conclude that

Nrðuk ,rkÞ
 �

j dg½ 
i ! Nrðu,rÞ½ 
j dg½ 
i in L2ðQÞ (4.61a)

as k ! 1, for all i 2 f1, :::, dg and j 2 f1, :::,Mg: Proceeding similarly, we further
obtain the following convergences:

Nuðuk, rkÞ � dwi ! Nuðu, rÞ � dwi in L2ðQÞ, (4.61b)

Kuðuk, rkÞ � dwi ! Kuðu, rÞ � dwi in L2ðQÞ, (4.61c)

Krðuk, rkÞ � dzj ! Krðu, rÞ � dzj in L2ðQÞ, (4.61d)

KCðuk, rkÞ � dzj ! KCðu, rÞ � dzj in L2ðRÞ, (4.61e)

for all i 2 f1, :::, kLg and j 2 f1, :::, kMg:
Eventually, invoking the convergences (4.53), (4.55)–(4.58), (4.60) and (4.61), we may

pass to the limit in (4.59). As the test function d and the indices i 2 f1, :::, kLg, and j 2
f1, :::, kMg can be chosen arbitrarily, we conclude by means of a diagonal argument
that the quintuplet ðu, l, r, v, pÞ satisfies the weak formulation (3.37) for all test func-

tions g 2 H1ðX;RdÞ, f ¼ wi, h ¼ wi, n ¼ zj with i, j 2 N: Next, we recall that the fami-

lies fwigi2N and fzjgj2N are Schauder bases of H2
nðX;RLÞ and H2

nðX;RMÞ, respectively.

Since H2
nðX;RLÞ is dense in H1ðX;RLÞ, and H2

nðX;RMÞ is dense in H1ðX;RMÞ, we
eventually conclude that the weak formulation (3.37) is actually satisfied for all test

functions g 2 H1ðX;RdÞ, f, h 2 H1ðX;RLÞ and n 2 H1ðX;RMÞ: Moreover, the identities

divðvÞ ¼ Svðu, rÞ a:e: in Q,

ujt¼0 ¼ u0 a:e: in X,

hrjt¼0 , UiH1 ¼ hr0 , UiH1 for all U 2 H1ðX;RMÞ
follow directly from the convergences stated in (4.53) and the uniqueness of the limit.
This proves that the quintuplet ðu, l, r, v, pÞ is indeed a weak solution to the multiphase
Cahn–Hilliard–Brinkman system (1.1) in the sense of Definition 3.4.

Step 5: Further properties. We will now establish the remaining properties of the weak
solution constructed in Step 4.
Using the convergences (4.53) and the weak lower semicontinuity of the norms, we

infer from the a priori estimate (4.11) that

kukL1ð0,T;H1Þ\L2ð0,T;H3Þ þ krkL1ð0,T;L2Þ\L2ð0,T;H1Þ þ krkL4ð0,T;L2CÞ
þ klkL2ð0,T;H1Þ þ kvkL2ð0,T;L2Þ þ k

ffiffiffiffiffiffiffiffiffiffi
gðuÞ

p
DvkL2ð0,T;L2Þ þ kpkL4=3ð0,T;L2Þ

þ kWuðuÞkL4ð0,T;L2Þ\L2ð0,T;L6Þ þ krNrðu, rÞkL2ð0,T;L2Þ
þ kdivðu� vÞkL4=3ð0,T;L3=2Þ þ kdivðr� vÞkL1ð0,T;L1Þ � CAP:

(4.62)

In particular, this means that the second regularity in (3.38) is already established.
Furthermore, in Step 4 have already shown that

u 2 H1ð0,T; ðH1Þ0Þ \ L2ð0,T;H3Þ � H1ð0,T;H�1Þ \ L2ð0,T;H3Þ:
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Invoking a result from interpolation theory [79, Thm. 4.10.2] as well as Lemma 3.1, we
conclude that

u 2 C 0,T½ 
; ðH�1
,H3Þ1

2, 2

	 

¼ Cð 0,T½ 
;H1Þ

which proves the first regularity in (3.38).

5. ‘‘Darcy limit’’ and existence of weak solutions to the (MCHD) system

This section is devoted to the construction of a weak solution to the multiphase Cahn–
Hilliard–Darcy system (1.1) in the sense of Definition 3.6. This is achieved by an asymptotic
technique, where the positive viscosity functions in the system (MCHB) are sent to zero.

Proof of Theorem 3.7. For every n 2 N, let gn and kn be viscosity functions as described
in Theorem 3.7, and let ðun, ln, rn, vn, pnÞ denote a weak solution of the
Cahn–Hilliard–Brinkman system (1.1) obtained from Theorem 3.5 with the choices g ¼
gn and k ¼ kn: We point out that by this explicit choice, we do not require the axiom
of choice, even though the uniqueness of the weak solutions is unknown. We recall
that, owing to Theorem 3.5, the solutions ðun, ln, rn, vn, pnÞ satisfy the weak formulation
(3.37a)–(3.37d) (written for g ¼ gn and k ¼ kn) and exhibit the regularities

un 2 H1ð0,T; ðH1Þ0Þ \ Cð 0,T½ 
;H1Þ \ L2ð0,T;H3Þ,
rn 2 W1, 43ð0,T; ðH1Þ0Þ \ Cð 0,T½ 
; ðH1Þ0Þ \ L1ð0,T; L2Þ \ L2ð0,T;H1Þ,
unjC 2 Cð 0,T½ 
; L2CÞ, rnjC 2 L4ð0,T; L2CÞ,
ln 2 L2ð0,T;H1Þ, vn 2 L2ð0,T;H1Þ, pn 2 L

4
3ð0,T; L2Þ,

divðun � vnÞ 2 L2 0,T; L
3
2

� �
, divðrn � vnÞ 2 L1 0,T;L

3
2

� �
:

8>>>>>>>><
>>>>>>>>:

(5.1)

Since for any fixed n 2 N, the viscosities gn and kn are assumed to be compatible with
A3, there exist constants 0 < g0, n < g1, n and k, n > 0 such that (3.7) is fulfilled. In view
of (3.42), we assume (without loss of generality) that g1, n ¼ k, n ¼ 1 for all n 2 N and
we further fix

g0, n :¼ inf
p2RL

gnðpÞ:

To investigate the convergence of the sequence fðun , ln, rn , vn , pnÞgn2N, we first need to
derive suitable bounds that are uniform in n.

Step 1: Uniform estimates. In the following, the letter C denotes generic positive con-
stants that do not depend on n. They may still depend on the initial data and the other
constants from Section 3.3, except for g0, n: We already know from Theorem 3.5 that

kunkL1ð0,T;H1Þ\L2ð0,T;H3Þ þ krnkL1ð0,T;L2Þ\L2ð0,T;H1Þ þ krnkL4ð0,T;L2CÞ
þ klnkL2ð0,T;H1Þ þ kvnkL2ð0,T;L2Þ þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðunÞ

p
DvnkL2ð0,T;L2Þ þ kpnkL4=3ð0,T;L2Þ

þ kWuðunÞkL4ð0,T;L2Þ\L2ð0,T;L6Þ þ krNrðun ,rnÞkL2ð0,T;L2Þ
þ kdivðun � vnÞkL4=3ð0,T;L3=2Þ þ kdivðrn � vnÞkL1ð0,T;L1Þ � C:

(5.2)

36 P. KNOPF AND A. SIGNORI



We still have to derive additional uniform estimates for the time derivatives of un and
rn: To this end, we recall the identities

divðun � vnÞ ¼ ðrunÞvn þ unSvðun, rnÞ a:e: in Q, (5.3)

divðrn � vnÞ ¼ ðrrnÞvn þ unSvðun, rnÞ a:e: in Q: (5.4)

Let now f 2 L
8
3ð0,T;H1Þ be an arbitrary test function. Using the continuous embedding

H
3
2 ,! L3 as well as Lemma 3.1, we obtain the estimateðT

0

ð
X
divðun � vnÞ � f dðx, tÞ � C

ðT
0
ðkrunkL3kvnkL2 þ kunkL2ÞkfkH1 dt

� C
ðT
0
ðkunk3=4H1 kunk1=4H3 kvnkL2 þ kunkL2ÞkfkH1 dt

� Cðkunk3=4L1ð0,T;H1Þkunk1=4L2ð0,T;H3ÞkvnkL2ð0,T;L2Þ þ kunkL1ð0,T;L2ÞÞkfkL8=3ð0,T;H1Þ

� CkfkL8=3ð0,T;H1Þ:

Taking the supremum over all f 2 L8=3ð0,T;H1Þ with kfkL8=3ð0,T;H1Þ � 1, we thus con-

clude the uniform estimate

kdivðun � vnÞkL8=5ð0,T;ðH1Þ0Þ � C: (5.5)

Now, by a comparison argument, we infer from (3.37 b) (written for the functions with
index n) that

k@tunkL8=5ð0,T;ðH1Þ0Þ � C: (5.6)

Since L1 is continuously embedded in ðW1, 4Þ0, we infer from (5.2) that

kdivðrn � vnÞkL1ð0,T;ðW1, 4Þ0Þ � C: (5.7)

By means of a comparison argument, we eventually conclude from (3.37d) (written for
the functions with index n) that

k@trnkL1ð0,T;ðW1, 4Þ0Þ � C: (5.8)

Combining (5.2) with (5.5)–(5.8), we eventually obtain the uniform estimate

kunkW1, 8=5ð0,T;ðH1Þ0Þ\L1ð0,T;H1Þ\L2ð0,T;H3Þ þ krnkW1, 1ð0,T;ðW1, 4Þ0Þ\L1ð0,T;L2Þ\L2ð0,T;H1Þ

þ krnkL4ð0,T;L2CÞ þ klnkL2ð0,T;H1Þ þ kvnkL2ð0,T;L2Þ þ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðunÞ

p
DvnkL2ð0,T;L2Þ

þ kpnkL4=3ð0,T;L2Þ þ kWuðunÞkL4ð0,T;L2Þ\L2ð0,T;L6Þ þ krNrðun, rnÞkL2ð0,T;L2Þ
þ kdivðun � vnÞkL8=5ð0,T;ðH1Þ0Þ\L4=3ð0,T;L3=2Þ þ kdivðrn � vnÞkL1ð0,T;L1Þ � C:

(5.9)

Step 2: Passing to the limit. The next step is to pass to the limit as n ! 1: From the
uniform estimate (5.9), we infer the existence of a quintuplet ðu, r, l, v, pÞ as well as
limits s and # such that for all s 2 ½0, 1Þ,

un ! u weakly- in L1ð0,T;H1Þ,
weakly in W1, 85ð0,T; ðH1Þ0Þ \ L2ð0,T;H3Þ, a:e: in Q,

and strongly in Cð 0,T½ 
;HsÞ \ L2ð0,T;H2þsÞ,
(5.10a)
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unjC ! ujC strongly in Cð 0,T½ 
; L2CÞ, and a:e: on R, (5.10b)

rn ! r weakly- in L1ð0,T; L2Þ,
weakly in W1, 1ð0,T; ðW1, 4Þ0Þ \ L2ð0,T;H1Þ, a:e: in Q,

and strongly in Cð 0,T½ 
; ðW1, 4Þ0Þ \ L2ð0,T;HsÞ,
(5.10c)

rnjC ! rjC weakly in L4ð0,T; L2CÞ, strongly in L2ð0,T; L2CÞ, and a:e: on R,

(5.10d)

ln ! l weakly in L2ð0,T;H1Þ, (5.10e)

vn ! v weakly in L2ð0,T; L2divÞ, (5.10f)

pn ! p weakly in L
4
3ð0,T; L2Þ, (5.10g)

divðun � vnÞ ! s weakly in L
8
5ð0,T; ðH1Þ0Þ \ L

4
3 0,T; L

3
2

� �
, (5.10h)

divðrn � vnÞ ! # weakly in L1ð0,T; L1Þ, (5.10i)

gnðunÞ ! 0 strongly in L1ðQÞ, and a:e: in Q, (5.10j)

knðunÞ ! 0 strongly in L1ðQÞ, and a:e: in Q, (5.10k)

as n ! 1, along a non-relabeled subsequence. The strong convergences in (5.10a) and
(5.10c) are a direct consequence of the Aubin–Lions–Simon lemma (see [77, Theorem
II.5.16]), and the strong convergences in (5.10 b) and (5.10d) are obtained through the
trace theorem. We further point out that the convergence vn ! v in L2ð0,T; L2divÞ (see
(5.10f)) already entails that

divðvnÞ ! divðvÞ weakly in L2ð0,T; L2Þ (5.11)

as n ! 1: Recalling the assumptions A2–A8, we use the above convergences to infer
that

Cðun, rnÞ ! Cðu, rÞ, Dðun, rnÞ ! Dðu, rÞ a:e: in Q, (5.12a)

Nuðun, rnÞ ! Nuðu, rÞ, Nrðun, rnÞ ! Nrðu, rÞ a:e: in Q, (5.12b)

rNrðun, rnÞ ! rNrðu, rÞ, Svðun, rnÞ ! Svðu, rÞ a:e: in Q, (5.12c)

WuðunÞ ! WuðuÞ a:e: in Q, (5.12d)

SCðun, rnÞ ! SCðu, rÞ a:e: onR, (5.12e)

Kuðun, rnÞ ! Kuðu, rÞ, huðun, rnÞ ! huðu, rÞ a:e: in Q, (5.12f)

Krðun, rnÞ ! Krðu, rÞ, hrðun, rnÞ ! hrðu, rÞ a:e: in Q, (5.12g)

as n ! 1, after extracting a subsequence. Now, using (5.12c), (5.12d), the uniform esti-
mate (5.9), and the uniqueness of the limit, we further conclude that

WuðunÞ ! WuðuÞ weakly in L4ð0,T; L2Þ \ L2ð0,T; L6Þ, (5.13)

rNrðun, rnÞ ! rNrðu, rÞ weakly in L2ð0,T; L2Þ (5.14)

as n ! 1, after another subsequence extraction.

38 P. KNOPF AND A. SIGNORI



Let now d 2 C1
c ð0,TÞ, g 2 H1ðX;RdÞ, f, h 2 H1ðX;RLÞ, n 2 W1, 4ðX;RMÞ ,! L1ðX;

R
MÞ, and q 2 H1ðXÞ be arbitrary test functions. We now test the weak formulation

(3.37) (written for ðun, ln, rn, vn, pnÞ and the viscosities gn and kn) with dg, df, dh and
dn, and we integrate the resulting equations with respect to time from 0 to T. We fur-
ther multiply the identity (3.37e) (written for vn, un and rn) by dq and integrate the
resulting equation over Q. In summary, we obtain

0 ¼
ð
Q
ð2gnðunÞDvn þ knðunÞdivðvnÞI� pnIÞ : drgþ �vn � dg dðx, tÞ

�
ð
Q
ðrunÞ>ln � dgþ ðrrnÞ>Nrðun, rnÞ � dg dðx, tÞ,

(5.15a)

0 ¼
ðT
0
h@tun , fiH1 d dt þ

ð
Q
divðun � vnÞ � df dðx, tÞ

þ
ð
Q
Cðun, rnÞrln : drf� Suðun, rn, lnÞ � df dðx, tÞ,

(5.15b)

0 ¼
ð
Q
� ln � dh dxþ cerun : drhþ ce�1WuðunÞ � dh dðx, tÞ

þ
ð
Q
Nuðun, rnÞ � dh dðx, tÞ,

(5.15c)

0 ¼
ðT
0
h@trn , niW1, 4 d dt þ

ð
Q
divðrn � vnÞ � dn dðx, tÞ

þ
ð
Q
Dðun, rnÞrNrðun, rnÞ : drn dðx, tÞ

þ
ð
Q
Srðun, rn, lnÞ � dn dðx, tÞ �

ð
R
SCðun, rnÞ � dn dS dt,

(5.15d)

0 ¼
ð
Q
divðvnÞ dq� Svðun, rnÞ dq dðx, tÞ: (5.15e)

Our next goal is then to pass to the limit n ! 1 in this variational formulation.
Invoking the convergence properties (5.10) and (5.12), and using Lebesgue’s dominated
convergence theorem, A5–A7, we deduce that

Cðun, rnÞdrf ! Cðu, rÞdrf, Dðun, rnÞdrn ! Dðu, rÞdrn in L2ðQÞ, (5.16a)

huðun, rnÞ>df ! huðu, rÞ>df, hrðun ,rnÞ>dn ! hrðu, rÞ>dn in L2ðQÞ, (5.16b)

as n ! 1: Furthermore, proceeding as in Step 4 of the proof of Theorem 3.5, we use
Lebesgue’s generalized convergence theorem [78, Sec. 3.25] to conclude that

Nrðun ,rnÞ
 �

j dg½ 
i ! Nrðu, rÞ½ 
j dg½ 
i in L2ðQÞ, (5.17a)

Nuðun, rnÞ � dh ! Nuðu, rÞ � dh in L2ðQÞ, (5.17b)

Kuðun, rnÞ � df ! Kuðu, rÞ � df in L2ðQÞ, (5.17c)

Krðun, rnÞ � dn ! Krðu, rÞ � dn in L2ðQÞ, (5.17d)
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KCðun, rnÞ � dn ! KCðu, rÞ � dn in L2ðRÞ, (5.17e)

as n ! 1, for all i 2 f1, :::, dg and j 2 f1, :::,Mg: For most of the terms in (5.15), we
can simply use the convergences (5.10), (5.13), (5.14), (5.16) and (5.17) to pass to the
limit n ! 1: However, some of the terms require a closer investigation.
In the terms depending on the viscosity functions gn and kn, we can pass to the limit

n ! 1 as follows:ð
Q
2gnðunÞDvn : drg dðx, tÞ

� C k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðunÞ

p
DvnkL2ð0,T;L2ÞkgnðunÞk

1
2
L1ðQÞkdkL1ð 0,T½ 
ÞkgkH1

� C kgnðunÞk
1
2
L1ðQÞkdkL1ð 0,T½ 
ÞkgkH1 ! 0,

(5.18)

ð
Q
dknðunÞdivðvnÞI : rg dðx, tÞ

� CkknðunÞkL1ðQÞkSvðun ,rnÞkL2ð0,T;L2ÞkdkL1ð 0,T½ 
ÞkgkH1 ! 0:
(5.19)

Furthermore, we still need to recover the identities s ¼ divðu� vÞ and # ¼ divðr� vÞ
almost everywhere in Q. To prove the latter identity, we first deduce from (5.10i) thatð

Q
divðrn � vnÞ � dn dðx, tÞ !

ð
Q
# � dn dðx, tÞ for all n 2 W1, 4: (5.20)

Let us now consider an arbitrary test function n0 2 C1
c ðX;RMÞ: Performing an integra-

tion by parts, we obtainð
Q
divðrn � vnÞ � dn0 dðx, tÞ ¼ �

ð
Q
ðrn � vnÞ : drn0 dðx, tÞ:

Due to (5.10c) and (5.10f), we may pass to the limit on the right-hand side by the
weak-strong convergence principle. After another integration by parts, we getð

Q
divðrn � vnÞ � dn0 dðx, tÞ ! �

ð
Q
ðr� vÞ : drn0 dðx, tÞ

¼
ð
Q
divðr� vÞ � dn0 dðx, tÞ

as n ! 1, for all n0 2 C1
c ðX;RMÞ: Since (5.20) holds true for all n ¼ n0 2

C1
c ðX;RMÞ, we eventually haveð

Q
# � dn0 dðx, tÞ ¼

ð
Q
divðr� vÞ � dn0 dðx, tÞ

for all n0 2 C1
c ðX;RMÞ, d 2 C1ð½0,T
Þ, which is enough to conclude that # ¼

divðr� vÞ almost everywhere in Q. In particular, this proves thatð
Q
divðrn � vnÞ � dn dðx, tÞ !

ð
Q
divðr� vÞ � dn dðx, tÞ (5.21)

as n ! 1: Proceeding similarly with the convection term associated with the phase-
field variable, we conclude that s ¼ divðu� vÞ almost everywhere in Q, and
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ð
Q
divðun � vnÞ � df dðx, tÞ !

ð
Q
divðu� vÞ � df dðx, tÞ (5.22)

as n ! 1: We can now use the convergences (5.10)–(5.14), (5.16)–(5.19), (5.21), and
(5.22), along with the identities s ¼ divðu� vÞ and # ¼ divðr� vÞ a.e. in Q, to pass to
the limit n ! 1 in the variational formulation (5.15). Since d 2 C1ð½0,T
Þ was arbi-
trary, this proves that the quintuplet ðu, l, r, v, pÞ satisfies the equations

0 ¼
ð
X
� p divðgÞ þ ð�v � ðruÞ>l� ðrrÞ>Nrðu, rÞÞ � g dx, (5.23a)

0 ¼ h@tu, fiH1 þ
ð
X
ððruÞv � fþ uSvðu, rÞ � fÞ dx

þ
ð
X
Cðu, rÞrl : rf� Suðu, r, lÞ � f dx,

(5.23b)

0 ¼
ð
X
�l � h dx þ ceru : rhþ ce�1WuðuÞ � hþ Nuðu, rÞ � h dx, (5.23c)

0 ¼ h@tr, niW1, 4 þ
ð
X
ðrrÞv � n� rSvðu, rÞ � nþ Dðu, rÞrNrðu, rÞ : rn dx

þ
ð
X
Srðu, r, lÞ � n dx �

ð
C
SCðu, rÞ � n dS

(5.23d)

almost everywhere in ð0,TÞ, for all test functions g 2 H1ðX;RdÞ, f, h 2 H1ðX;RLÞ, n 2
W1, 4ðX;RMÞ, as well as the identity

divðvÞ ¼ Svðu, rÞ a:e: in Q: (5.23e)

Testing (5.23a) with any function g0 2 C1
c ðX;RdÞ, we deduce thatð

X
p divðg0Þ dx ¼

ð
X
ð�v � ðruÞ>l� ðrrÞ>Nrðu, rÞÞ � g0 dx:

Since

k�v � ðruÞ>l� ðrrÞ>Nrðu, rÞkL1ð0,T;L3=2Þ
� CkvkL2ð0,T;L2Þ þ krukL2ð0,T;L2ÞklkL2ð0,T;L6Þ
þ CkrrkL2ð0,T;L2ÞðkukL2ð0,T;L6Þ þ krkL2ð0,T;L6Þ þ 1Þ

� C,

we conclude that rp exists in the weak sense with

rp ¼ �v � ðruÞ>l� ðrrÞ>Nrðu, rÞ 2 L1 0,T; L
3
2

� �
a:e: in Q:

Plugging this identity into (5.23a) and integrating the resulting expression by parts, we
infer that

0 ¼ �
ð
X
pðtÞ divðgÞ þ rpðtÞ � g dx ¼ �

ð
C
pðtÞg � n dS (5.24)

for almost all t 2 ð0,TÞ and all g 2 H1: For any q 2 C1
bðCÞ, we have �qn 2 H1 and we

may thus choose g ¼ �qn: We thus obtain
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0 ¼
ð
C
pðtÞ q n � n dS ¼

ð
C
pðtÞ q dS (5.25)

for all q 2 C1
bðCÞ and almost all t 2 ð0,TÞ, which directly proves that pjR ¼ 0 a.e. on R.

In summary, we have

p 2 L
4
3ð0,T; L2Þ \ L1

�
0,T;W

1, 32
0

�
, (5.26)

and thus, all regularities in (3.40) are established. In particular, via integration by parts,
(5.23a) can be replaced by the equivalent formulation

0 ¼
ð
X
rp � gþ ð�v � ðruÞ>l� ðrrÞ>Nrðu, rÞÞ � g dx: (5.27)

We thus conclude that the quintuplet ðu, l, r, v, pÞ satisfies the weak formulation (3.41).
As a further consequence of the convergences un ! u in Cð½0,T
; L2Þ from (5.10a)

and rn ! r in Cð½0,T
; ðW1, 4Þ0Þ from (5.10c) we have

u0 ¼ unjt¼0 ! ujt¼0 in L2ðX;RLÞ,
hr0,UiH1 ¼ hrnjt¼0,UiW1, 4 ! hrjt¼0,UiW1, 4 for all U 2 W1, 4ðX;RMÞ,

as n ! 1, meaning that u and r satisfy the initial conditions (3.41f) and (3.41 g).
This proves that the limit ðu, l, r, v, pÞ is a weak solution of the multiphase

Cahn–Hilliard–Darcy system in the sense of Definition 3.6. We further point out that
the additional regularity property (3.44) can be verified by arguing exactly as in the
proof of Theorem 3.5. Thus, the proof of Theorem 3.7 is complete.
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