In industrial research, experiments are designed to determine the optimal factor levels of the process parameters. Typically, experimental data are used to fit empirical models (for example, regression models) to derive one set of optimal conditions that maximize (or minimize) the response. Unfortunately, the optimization rarely provides a Confidence Interval for the location of the optimal solution, even though the optimal solution itself is subjected to variability. From a practitioner's point of view, identifying a region of possible optimal values provides high operational flexibility to adjust process parameters online during production. This paper provides a procedure for computing a confidence region for the optimal point based on experimental data, bootstrapping, and data depth. The procedure is validated using a case study from micro-injection molding, where the part weight is maximized under a constraint of the probability of flash formation. The proposed method considers that the objective function (part weight) and the constraint (probability of flash formation) are estimated from experimental data and subjected to sampling variability.

Process optimization via confidence region: a case study from micro-injection molding

Trotta, Gianluca;Cacace, Stefania;Semeraro, Quirico
2022-01-01

Abstract

In industrial research, experiments are designed to determine the optimal factor levels of the process parameters. Typically, experimental data are used to fit empirical models (for example, regression models) to derive one set of optimal conditions that maximize (or minimize) the response. Unfortunately, the optimization rarely provides a Confidence Interval for the location of the optimal solution, even though the optimal solution itself is subjected to variability. From a practitioner's point of view, identifying a region of possible optimal values provides high operational flexibility to adjust process parameters online during production. This paper provides a procedure for computing a confidence region for the optimal point based on experimental data, bootstrapping, and data depth. The procedure is validated using a case study from micro-injection molding, where the part weight is maximized under a constraint of the probability of flash formation. The proposed method considers that the objective function (part weight) and the constraint (probability of flash formation) are estimated from experimental data and subjected to sampling variability.
2022
Process optimization, Confidence regions, Micro-injection molding, Multi-Objective Decision Making
File in questo prodotto:
File Dimensione Formato  
Process optimization via confidence region a case study from micro-injection molding.pdf

accesso aperto

: Publisher’s version
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1217240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact