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Abstract
In industrial research, experiments are designed to determine the optimal factor levels of the process parameters. Typically,
experimental data are used to fit empirical models (for example, regression models) to derive one set of optimal conditions
that maximize (or minimize) the response. Unfortunately, the optimization rarely provides a Confidence Interval for the
location of the optimal solution, even though the optimal solution itself is subjected to variability. From a practitioner’s point
of view, identifying a region of possible optimal values provides high operational flexibility to adjust process parameters
online during production. This paper provides a procedure for computing a confidence region for the optimal point based
on experimental data, bootstrapping, and data depth. The procedure is validated using a case study from micro-injection
molding, where the part weight is maximized under a constraint of the probability of flash formation. The proposed method
considers that the objective function (part weight) and the constraint (probability of flash formation) are estimated from
experimental data and subjected to sampling variability.

Keywords Process optimization · Confidence regions · Micro-injection molding · Multi-Objective Decision Making

Introduction

The objective of experimental design is to build empirical
models of the process to identify the relevant process
factors and, eventually, the optimal levels of the processing
conditions. However, the processes often considered in
technological applications are "noisy," meaning that the
same input parameters will not result in identical response
values. This is called sampling variability. Usually, sampling
variability is not considered in the optimization phase, and
only one set of process parameters is selected as optimal.
Still, the process cannot repeat itself means that the optimal
value is also subjected to sampling variability. Therefore,
it is possible to derive a Confidence Region, CR, of the
location of the optimal point. The interest in building
Confidence regions for the location of the optimal point
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arises from the author’s experience with industrial research.
From a practitioner’s point of view, knowing only one set of
parameters might be too conservative. Boundary conditions
might change, and machine performances vary during their
lifetime when running in a steady state. Identifying a region
of possible optimal values could be more interesting and
provide higher flexibility in a manufacturing environment.
Often, machine operators change the process parameters
online during production to slightly adjust the settings
based on their experience. Leaving the choice entirely to
the operators could be dangerous. To this extent, it would
be favorable to provide a region of optimal processing
conditions that could be used to adjust the process.

Building a Confidence Region for the location of the opti-
mal solution is awell-knownproblem in statistics. Earlywork
by Box and Draper (1954) focused on the Confidence region
of a stationary point for a response surface function. In the
case of a polynomial model and normality assumption, pro-
cedures were proposed in the literature (Cahya et al., 2004;
Peterson et al., 2002; Wan et al., 2016), and these methods
were applied in drug testing (Carter et al., 1982) and biology
(Brooks et al., 2005). Del Castillo et al. (2020) generalized
the previous results providing a framework to identify CR for
the location of the optimal point for distribution-free models.
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However, multiple objectives must be optimized simul-
taneously in the manufacturing process, such as costs,
performances, and manufacturability. In this case, we refer
to Multi-Objective Decision Making (MODM) problems
(Nuno Ricardo Costa & Lourenço, 2016). In the literature,
several approaches are available to solve MODM: desirabil-
ity functions, grey analysis, and goal programming to cite
the most important ones. In desirability analysis (Nuno R.
Costa et al., 2011; Derringer & Suich, 1980), each response
is converted into a desirability function that varies over
the range [0,1]; if the response is close to the target, the
desirability function approaches 1, and if the response is out-
side an acceptable region, the desirability function is 0. The
desirability approach was applied to different manufacturing
processes (Camposeco-Negrete, 2020; Gupta et al., 2019).
Grey relational analysis (Ju-Long, 1982) associates each
experimental data with a grey relational coefficient and grey
relational grade based on how each data behaves compared
to the expected value for each response. A greater grey rela-
tional grade corresponds to better performance.Grey analysis
was often applied in combination with the Taguchi design
of the experiments (Palanikumar, 2011) (Kuram & Ozcelik,
2013). Desirability and grey analysis transform a multi-
dimensional problem into a one-dimensional optimization
problem using the desirability function and the grey relation
grade. In Goal programming, all the objectives are assigned
target values and a relative priority on achieving these values.
Goal programming treats these values as “targets to aspire
for” (Reklaitis et al., 1983). The algorithm attempts to find
a solution as close as possible to all target values following
the priorities given by the experimenter. All these methods,
and others, are viable solutions to solve MODM problems.
However, to the author’s knowledge, none of them provides
information on theConfidenceRegion of the optimal solution
found but only one set of optimal process parameters.

Recently Del Castillo (2020) addressed the problem of
constructing the CR of the optimal point considering aMulti-
Objective problem under uncertainty. However, only the
objective function was subjected to error, while the con-
straint was deterministic. In an industrial environment, the
constraint could be estimated from experimental data. For
example, it could represent a probability of defect formation
as a function of the process parameters and, therefore, subject
to sampling variability.

The literature review showed no methodologies involving
the evaluation of CR of the optimal point in MODM prob-
lems where all the objectives are empirical functions subject
to sampling variability. For this reason, this work focuses
on providing an optimization procedure that, starting from
an experimental approach, allows to determine a Confidence
Region for the location of the optimal set of parameterswhen
multiple responses need to be optimized at the same time, and
all of them are estimated from experimental data.

The proposed procedure is validated on a case study
considered regarding the micro-injection molding process
(μIM). μIM represents a manufacturing process that allows
the production of micro-components with low tolerances at
a relatively low cost. It finds applications in the biomedical,
automotive, and microfluidic sectors. The μIM is similar to
the standard injection molding process. Nevertheless, major
criticalities arise whenminiaturizing the process. The micro-
injection molding process is challenging to optimize because
it operates in extreme conditions (Eladl et al., 2018). Further-
more, the quality of a μIM component is usually associated
with the ability to fill the cavity during the process, resulting
in the final component’s weight. Researchers tried to opti-
mize the μIM process by maximizing the weight of the part,
as shown in several works (Attia & Alcock, 2011; Eladl
et al., 2018). The high weight of the part implies the lack
of voids and shrinkage phenomena. The process parameters
that affect the part weight are known, and they have been
investigated. The most studied parameters were mold tem-
perature,melt temperature, injection speed, holding pressure,
and cooling time. However, if not well-calibrated, the con-
ditions that ensure a complete cavity filling produce parts
with a well-known flash defect. Flash is the formation of
unwanted additional material between the two molds due
to the pressure of the injection material that exceeds the
clamping force of the mold (Eladl et al., 2018). The pro-
cess parameters that describe the formation of flash in μIM
are the same that define the part weight, so one experimental
campaign can be designed to study both part weight and flash
formation simultaneously. The μIM is a suitable case study
for investigating the advantage of using Confidence regions
to optimize industrial-technological problems. As already
described, μIM works in extreme conditions, and therefore,
the optimization process is challenging. The knowledge of a
set of optimal parameters, rather than just one condition, is
helpful in an industrial environment to obtain higher oper-
ational flexibility. The optimization is constrained to the
formation of the flash defect. The optimal solution might fall
on or near the boundary when solving a constrained problem,
resulting in dangerous conditions. Using a confidence region
provides a broader knowledge of the feasible conditions that
satisfy the constraint.

This work provides a procedure for evaluating the confi-
dence region of the optimal solution for MODM problems.
Contrary to the currently available methods for process opti-
mization in MODM problems, the proposed methodology
provides a region of the parameters containing the opti-
mal solutions of the problem with a determined probability.
Among all the parameters belonging to the CR, the practi-
tioner can select the most suitable one based on the specific
needs, which makes the proposed approach useful primarily
in an industrial environment.
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Fig. 1 a DESMA Tec Formica
Plast 1 K and b details the micro
molds and injected part with
general dimensions

We propose two versions of the same procedure used in an
industrial application. One procedure is called the Improved
Standard procedure (ISp), and the second is the Generalized
Optimal Region procedure (OGRp). The two procedures use
the same input data to obtain a CR for the location of the
optimal solution; however, they provide a different approach
to selecting the optimal set of processing conditions.

The procedures exploit experimental data, bootstrap tech-
niques (Adjei & Karim, 2016), and data depth (Pokotylo
et al., 2016) to build the Confidence Region. The paper is
organized as follows. In section “Case study: micro injec-
tion molding” the μIM is described, and the experimental
design is used to estimate the regression equations for weight
and flash probability as a function of the process parame-
ters. In section “Description of the optimization procedure”,
the optimization methodology is described. The results of
the two procedures are presented in section “Results” and a
discussion of the methodologies is proposed in section “Dis-
cussion”.

Case study: micro injectionmolding

The machine used for experimentation is the DESMA Tec
Formica Plast 1 K (Fig. 1 a), and the material was POM
(Polyoxymethylene). The part identified for the experimen-
tation is a benchmark for micro injection moulding, a double
thin plate component with a thickness of 500 μm and an
aspect ratio of about 8, Fig. 1b).

The process parameters considered were melting temper-
ature Tmelt, holding pressure Phold, mold temperature Tmold,
injection speed vinj, and holding time thold. For simplicity, in
the analysis, we consider x as the vector of the coded process
parameters (x1, x2, x3, x4, x5), while natural variables are
indicated with the name of the factor (Tmelt, Phold, Tmold,
vinj, thold). A summary of the variables and the nomenclature

Table 1 Correspondence between factors, coded variables, and natural
variables

Factor Coded variables Natural variables

Melt temperature x1 Tmelt [°C]

Holding pressure x2 Phold [bar]

Mold temperature x3 Tmold [°C]

Injection speed x4 vinj [mm/s]

Holding time x5 thold [s]

is reported in Table 1. The levels of the process parameters
are reported in Table 2.

The response variables are part weight and the presence
of flash on the part (1 � flash, 0 � no flash); part weight is a
continuous variable while the flash is a binary variable.

A central composite design CCD (Montgomery, 2019)
was carried out to determine the influence of the process
parameters on the part weight and the flash formation. The
CCD design was selected because curvature was expected in
the responses. A CCD design is composed of a 25 factorial
points, with the addition of 10 axial points. Additionally, 20
replicates of the center point were added to obtain a precise
estimate of the process variability. The CCD was replicated
two times, resulting in 104 experiments, (25 + 10) × 2 + 20
� 104.

The significant factors affecting the probability of flash
formation are reported in Table 3.

A logistic regression model was fitted to describe the
probability of flash formation as a function of the process
parameters. The model in coded units is reported in Eq. (1).

(1)

P̂FL ASH
(
x, γ̂

) � eĝ

1 + eĝ
where ĝ

(
x, γ̂

)

� −3.401 + 1.257x1 + 3.85x2

+ 2.285x3 + 4.95x4 − 3.482x2x4

123



Journal of Intelligent Manufacturing

Table 2 Levels of process parameters for the experimental campaign

Levels
(coded)

Tmelt
(melt temperature)
[°C]

Phold
(holding pressure)
[bar]

Tmold
(mold temperature)
[°C]

vinj
(injection speed)
[mm/s]

thold
(holding time)
[s]

(+1.3) 236 1650 106 157.5 3.3

(+1) 230 1500 100 150 3

(0) 210 1000 80 125 2

(− 1) 190 500 60 100 1

(− 1.3) 184 350 54 92.5 0.7

Table 3 Significant factors affecting the probability of flash formation

Source DF Chi-Square p-value (Wald test)

Regression 5 23.82 0.000

Tmelt 1 6.27 0.012

Phold 1 14.8 0.000

Tmold 1 15.44 0.000

vinj 1 19.63 0.000

vinj*Phold 1 12.19 0.000

where γ̂
T � (−3.401, 1.257, 3.85, 2.285, 4.95, −3.482).

The conditions that did not result in flash formation were
used to estimate the weight of the parts as a function of the
process parameters. Out of 104 experimental runs, 33 parts
showed the flash defect. So, 71 conditions were used to fit
the part weight as a function of the process parameters. The
significant factors for weight are reported in Table 4.

The regression equation for the weight in coded units is
reported in Eq. (2).

(2)

ŵ
(
x, β̂

)
� 88.114 + 1.091x1 + 5.693x2

+ 2.193x22 + 0.884x1x2

where β̂
T � (88.114, 1.091, 5.693, 2.193, 0.884). The

model in Eq. (2) has an adj-R2 � 92.58%.
The objective function depends only on melting tempera-

ture and holding pressure, while the constraint is a function
of four process parameters (mold temperature, melt temper-
ature, injection speed, and hold pressure). Hold time does
not affect the weight or the flash formation. The selection of
the optimal solution is achieved through the definition of a
utility function, defined as

U (x, β̂, γ̂ ) � ŵ
(
x, β̂,

)
×

[
1 − P̂FL ASH

(
x, γ̂

)] −1 ≤ x ≤ 1

(3)

If the probability of flash formation P̂FL ASH is large
(Eq. (1) is close to 1), then the value of the utility func-
tion U

(
x, β̂, γ̂

)
becomes close to 0 whatever the value of

the weight of the part, that is precisely what we are aiming
at: avoid regions of the parameters where the probability of
flash formation is large independently from the value of the
objective function. On the contrary, when the probability of
flash formation is close to 0, the utility function is a proxy of
the weight of the part.

The condition that maximizes Eq. (3) is reported in Table
5.

The solution of the standard optimization states that x3
and x4 should be selected at their lowest level, as they influ-
ence only the constraint. Factor x5 (holding time) does not
influence both the process and the flash, so it is selected at
the lowest value to reduce the processing time. Factor x1
(melting temperature) is selected at the highest level, while
x2 (holding pressure) is set at a coded value of 0.7, which
corresponds to 1350 bar in natural variables.

Description of the optimization procedure

We aim to build a confidence region for a constrained opti-
mization problem where both the objective function and the
constraint are estimated from experimental data. Two key
points are proposed in this work:

1. The constraint of the problem is non-deterministic. Its
coefficients are subject to bootstrap, so the proposed pro-
cedure can be used in cases where the objective function
and the constraint are estimated from experimental data.
In principle, the number of constraints that can be con-
sidered is not limited.

2. The trimming is carried out on the objective function
and constraint coefficients rather than the optimal solu-
tions. As both the objective function and the constraint
are generated by bootstrapping, some combinations of a
realization could result in optimal solutions with extreme
combinations of process parameters that are unfeasible
in an industrial environment.
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Table 4 ANOVA results on part
weight Source DF Adj SS Adj MS F-Value p-value

Model 4 3381.26 845.32 525.1 0.000

Tmelt 1 68.41 68.41 42.49 0.000

Phold 1 2896.2 2896.2 1799.08 0.000

Phold*Phold 1 376.13 376.13 233.64 0.000

Tmelt*Phold 1 113.43 113.43 70.46 0.000

Error 65 143.27 1.61

Total 69 3524.53

Improved standard procedure (ISp)

We start by describing the Improved Standard procedure.
(ISp). The five steps of the ISp are described here, and they
are schematized in Fig. 2a).

In Step 1, the objective and constraint functions are esti-
mated based on experimental data. All 104 experimental
conditions were used to estimate the probability of flash
formation P̂FL ASH

(
x, γ̂

)
as in Eq. (1). A subset of the exper-

imental conditions was used to estimate the part weight,
Eq. (2). The subset consisted of all experimental conditions
that did not result in flash formation.

In step 2, bootstrapping is used. Bootstrapping is a sta-
tistical resampling method used to create simulated samples
from a single data set (Efron & Tibshirani, 1994).

We implemented the bootstrapping procedure proposed
in (Adjei & Karim, 2016) for logistic regression using the
original dataset, obtaining B sets of γ̂

∗
i . For each bootstrap

iteration (i� 1,…,B), the conditions that resulted in a lack of
flash defect were considered for bootstrapping the objective
function; the result is B sets of β̂

∗
i . Thus, the subset of con-

ditions that resulted in a lack of flash changed based on the
simulation result for each bootstrap iteration. This approach
was selected because it replicates the experiment and how
Eqs. (1) and (2) were estimated in step 1. The output of this
step is the bootstrap parameter region B defined as

B �
{(

γ̂ ∗
i , β̂∗

i

)
, i � 1, ..., B

}

In Step 3, the trimming procedure is carried out using the
projection data depth (Pokotylo et al., 2016) method. Data
depth technique were initially introduced inmultivariate data
analysis to measure the centrality of a point x ∈ R

d in a
data set. The data depth algorithm assigns to any point in
the data set a real number between [0,1] which defines its
degree of centrality. The result is a non-parametric ordering
of the points, where points near the center are assigned high
data depths values. Data depth found application in detecting
outliers in multivariate data analysis (Hubert et al., 2015). In
this paper, the concept of data depth was used to eliminate

the combinations of bootstrapped coefficients
(
γ̂ ∗
i , β̂∗

i

)
that

resulted in large values of data depth. The B coefficients(
γ̂

∗
i , β̂

∗
i

)
were ordered by trimming the α% outermost. This

yields the trimming parameter regionI, and the set of indexes
of the coefficients that belong to the region is calledIB ,where
|IB | � (1 − α)B.

In step 4, the utility function is maximized. A utility func-
tion is defined as the product between the weight of the part
and the complement to 1 of the probability of flash formation.
The utility function is the following:

Ui (x, γ̂
∗
i , β̂

∗
i ) � w

(
x, β̂

∗
i

)
· [
1 − PFLASH

(
x, γ̂

∗
i
)]

� w
(
x, β̂

∗
i

)
·
[

1 − eĝ(x, γ̂
∗
i )

1 + eĝ(x, γ̂
∗
i )

]

∀i ∈ IB

(4)

The process parameters that maximize the utility in the
range − 1 < x < 1 are obtained ∀i ∈ IB .

The optimization problem is the following:

x∗
opt, i � max−1≤x≤1

Ui

(
x, γ̂

∗
i , β̂

∗
i

)
∀i ∈ IB (5)

The results are (1-α)Boptimal solutionsx∗
opt, i , so

∣∣
∣x∗

opt

∣∣
∣ �

(1 − α)B
In Step 5, the parameter confidence region is built. The

convex hull that contains all the optimal solutionsx∗
opt, i deter-

mines the Confidence Region.

Ĉ R
[x∗

opt]
1−α �

{
x∗
opt, i, i ∈ IB

}

Generalized optimal region procedure (GORp)

It is possible to generalize the ISp procedure to provide addi-
tional information on the realization of the utility function in
the space of the parameters x; a schematization is illustrated

in Fig. 2b. The Confidence Region Ĉ R
[x∗

opt]
1−α resulting from

ISp did not provide practical information regarding selecting
the parameters inside the region itself, as shown in the next
Section. For this reason, a modified procedure was selected
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Fig. 2 Workflow of the Improved Standard procedure IS procedure (a) and generalized optimal region GOR procedure (b)

to help the practitioner identify an optimal region of pro-
cess parameters. TheGeneralized Optimal Region procedure
(GORp) aims to provide information regarding the combina-
tions of process parameters x that ensure a specific value of
utility, thus supplying technological-based criteria for select-
ing the region of the process parameters.

For generalizing the procedure, Steps 4 and 5 were mod-
ified as follows.

In Step 4, the utility function was evaluated over a grid
of points, therefore N � 41. As described in Sect. “Boot-
strap results”, the optimization problem can be simplified
considering only two out of 4 process variables (x5 is not
significant); for this reason, the grid is defined in two dimen-
sions. However, it is possible to generalize the procedure by
considering a multi-dimensional grid. We identify x jk as a

single point on the grid, where j � 1,…,N and k � 1,…,N.
The utility function is computed as follows:

∀ x jk ∈ XG , j � k � 1, ..., N

∀
(
γ̂

∗
i , β̂

∗
i

)
∈ IB

Compute

U(x jk , γ̂
∗
i , β̂

∗
i ) � w

(
x jk , β̂

∗
i

)
·
[

1 − eĝ(x jk , γ̂
∗
i )

1 + eĝ(x jk , γ̂
∗
i )

]

(6)

U is therefore a matrix with size N × N × (1 − α)B.
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Fig. 3 B bootstrapped values of the coefficients of x3 (mold temperature), and the coefficient of the interaction x2x4 (holding pressure and injection
speed) γ̂6 for Eq. (1)

In Step 5, the optimal region is identified. The utility func-
tion must be maximized; however, B(1-α) utility functions
result in (1-α)B optimization problems. This means that for
each grid value xjk, the utility has B(1-α) different values

because the bootstrapped coefficients
(
γ̂

∗
i , β̂

∗
i

)
are different

at each iteration i. For the selection of the optimality region,
the median value of the median utility ũ jk at each point xjk
is used:

ũ jk � Median U(x jk , γ̂
∗
i , β̂

∗
i )

Therefore, the optimal regionR is the set of the grid points
xjk resulting in a median utility ũ jk higher than a specific
value q.

R � {
x jk

∣∣ũ jk > q , j � 1, ..., N , k � 1, ..., N
}

The value q represents the median value of the expected
weight in a specific operating condition. So, the optimal
region is the set of process parameters that ensure that 50%
of the utility is higher than the selected q value. The practi-
tioner can select the value q based on the specific application,
providing a more flexible tool than ISp. The resulting combi-
nation of process parameters is not technically a confidence
region but rather an optimal region that guarantees a mini-
mum value of median utility.

The selection of the median as an index will be discussed
in Sect. “Results of the standard procedure”.

The following parameters were set B � 100,000 and α �
5% for the numerical simulation. Bootstrap procedures and
utility functions evaluations were carried out usingMatlab®;
data depth analysis was done using the “ddalpha” R-package
(Pokotylo et al., 2016).

Results

In this section, the results of the two proposed procedures
are reported. Firstly, a general overview of the results of the
Bootstrapped coefficients is carried out. Later, the results of
ISp and GORp are illustrated.

Bootstrap results

By inspecting Eq. (1), we find that if γ̂ ∗
4 (coefficient of x3) is

positive and if γ̂ ∗
6 (coefficient of the interaction x24) is neg-

ative, then the solution of the optimization problem requires
that x3 � − 1 and x4 � − 1. By looking at the B boot-
strapped coefficients, these two conditions are always met:
the bootstrap did not result in negative γ̂4 and positive γ̂6
coefficients. So, to minimize the probability of flash forma-
tion x3 (mold temperature) and x4 (injection speed) should
be set at their lowest level. So, from now on all graphs and
considerations are based on setting (x3, x4) � (−1, − 1).
This solution is coherent with the one found in the standard
optimization problem described in Sect. “Case study: micro
injection molding”.

The optimization problem requires only the optimization
of x1 (melt temperature) and x2 (holding pressure) because
they both influence the objective function and the constraint.
In detail, as x1 and x2 increase, the weight increases, but at
the same time also, the defect probability increases.

Results of the standard procedure

In the standard procedure, an optimization problem is solved
for each realization i of the trimmed bootstrap coefficients,
i.e., ∀i ∈ IB . The optimization problem in Eq. (5) involves
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Fig. 4 The optimal solution of the standard procedure (a) and histogram representing the frequency of the optimal solutions (b)

finding the set of values x∗
opt that maximize the utility func-

tion ∀i ∈ IB . The solutions are shown in Fig. 4a. x1 (melting
temperature) optimal values span in the whole range of the
parameters [− 1,1], while holding pressure x2 (holding pres-
sure) optimal solutions are only between [0.5,1].

Some optimal solutions are more frequent than others, as
shown in the histogram in Fig. 4b. The condition (x1, x2) �
(− 1,1) is the most frequent optimal solution, followed by
(x1, x2) � (1,1). In Fig. 4b the histogram shows the proba-
bility that a condition is selected as optimal by the ISp. For
graphical purposes, the optimal solutions were grouped. For
example, in the yellow bar are summed all the solutions that
fall in a small range of parameters (− 1 ≤ x1 < -0.95, 0.95
≤ x2 < 1). The conditions with low x1 and high x2 are the
most likely to be selected as optimal. The solutions in the
upper-right corner, i.e., x1 � x2 � 1, indicate that in some
realizations of the bootstrap procedure, the constraint did not
belong to the region of the parameters (− 1 ≤ x ≤ 1). The
combination of parameters (x1, x2) � (1,1) was selected as
optimal 7505 times out of 95,000. In this condition, the util-
ity maximization is equal to maximizing the weight as the
probability of flash formation is zero. As a matter of fact, by
looking at Eq. (2), the weight increases as both x1 and x2
increase. In general, the conditions where x2 is set near its
maximum value show a larger probability of being optimal.
The histogram in Fig. 5 shows the utility value of the optimal
solutions u∗

opt. The utility varies in a small range of values
(90 to 101 mg) despite obtaining a wide set of optimal values
x∗
opt.

In conclusion, the confidence region Ĉ R

[
x∗
opt

]

1−α for the loca-
tion of the optimal solution is the convex hull of the points in
Fig. 4 a). The convex hull contains the optimal solution to the
standard problem, (x1, x2)� (1, 0.7). This solution is reported

Fig. 5 Utility values u∗
opt of the optimal solutions x∗

opt in Fig. 4

in Table 5 andmarked as a green triangle in Fig. 4a. This com-
bination is optimal in 435 cases out of 95,000 according to
ISp.

The CR seems too large to be useful in an industrial envi-
ronment. Based on this procedure, the practitioner cannot
derive information on the utility for each point that belongs
to the CR; this is because the utility of each point depends on
the specific realization i of the bootstrap (for each i ∈ IB the
values of the coefficients γ̂

∗
i and β̂

∗
i change). Especially for

high-frequency optimal conditions (for example, x1 � x2 �
− 1), it is impossible to derive information on the utility’s dis-
tribution at a specific value of x. Moreover, it is not advisable
to compare the utility estimation for low-frequency solutions
and high-frequency solutions. An additional criticality of the
ISp solution is that the condition with the highest probability
of flash formation (x1, x2) � (1,1) belongs to the confidence
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Table 5 The optimal solution to the standard optimization problem

Optimal processing
conditions
Coded variables

Optimal processing conditions
Uncoded l variables

Weight (mg) Flash probability Utility
(mg)

x1 x2 x3 x4 x5 Tmelt
(°C)

Phold
(bar)

Tmold
(°C)

vinj
(mm/s)

Thold
(s)

1 0.7 − 1 − 1 − 1 230 1350 60 100 1 94.9 1.4% 93.6

region Ĉ R

[
x∗
opt

]

1−α . This is because, by solving the optimization
problem individually, 10% of the time (x1, x2) � (1,1) is the
optimal solution, as shown in Fig. 4b. This result allows the
practitioner to select a parameter combination that leads to a
high flash formation probability.

In conclusion, the ISp presents criticalities in the result-
ing CR for the proposed technological problem. For these
reasons, a second procedure was derived, GORp. The GORp
provides an iso-utility region, i.e., a sub-region of the param-
eters that result in the same median utility.

Results of the GORp

Compared to the previous case, for each point of the grid
x jk , (1 − B) α utility values are available and used to build
the optimal region. In this case, no optimization problem is
directly solved, but each point’s median utility is considered
for building the optimal region R.

For clarity purposes, the distribution of the weight and
probability of flash formation for two selected points are
shown in Fig. 6 (the points are x1 � x2 � 0.8 and x1 �
x2 � 1). For condition x1 � x2 � 0.8, the probability of flash
formation varies between 0 and 0.4. However, around 8500
simulations resulted in a lack of flash formation, less than
10% of the generated data. The weight distribution in Fig. 6b
can be approximated by a gaussian distribution centered on
97 mg. The resulting utility function for this specific com-
bination of parameters is shown in Fig. 6c. The utility has a
left-skewed distribution due to the shape of the flash proba-
bility distribution. For the upper right condition at x1 � x2
� 1, the weight distribution is similar to the one shown in
Fig. 6a. However, the mean weight is 100.2 mg, higher than
97 mg (the part weight increase is expected from Eq. (2)).
The flash probability increases greatly compared to x1 � x2
� 0.8; the probability varies between 0 and 0.7 because the
higher values of melting temperature and holding pressure
result in a higher probability of flash formation. The result
is a large range of utility values for this condition (x1 � x2
� 1), as visible in Fig. 6f). This results in a heavily skewed
utility distribution that indicates a high-risk condition from
an industrial point of view. A low utility indicates a defective
part because the utility is reduced in the presence of flash.

The median is selected as an index to be maximized for
deriving the optimal region of the parametersR. As the utility
distribution is highly skewed, the median is the best repre-
sentation of the utility for each combination of parameters.
For each point of the grid, the median utility ũ jk was eval-
uated, and Fig. 7 represents its distribution in the region of
the parameters.

At low levels of both parameters, the median utility is
low because of the low weight of the part; however, in this
region, the probability of flash formation is close to 0. As x2
increases, the utility increases, reaching its maximum when
x2 is larger than 0.8. However, in the upper right corner (x1
� x2 � 1), there is a sharp decrease in the median utility,
mostly due to the high probability of defect formation, as
seen in Fig. 6 e). According to the GORp, when both x1
and x2 move toward their highest values, the probability of
flash formation increases (see Eq. (1). This behavior is more
penalized in the optimization phase in the GORp because it
considers all the realization of the bootstrap (after trimming)
simultaneously. In only 10% of the cases, the flash constraint
does not belong to the optimal region, and therefore the opti-
mal solution is (x1, x2) � (1,1); in all the other cases, the
utility of this combination of parameters is reduced by the
high probability of flash formation. When the generalized
procedure evaluates the median distribution of the utility in
(x1, x2) � (1,1), this value is affected by the presence of a
heavier left tail due to the high probability of flash formation,
as illustrated in Fig. 6f. The maximum value of the median
utility ũ jk is equal to 97.12 mg. So, we select 96 mg as the
reference value q for constructing the optimal region. All the
conditions x that show a median utility higher than 96 mg
belong to the optimal region,R and these points are colored
in yellow in Fig. 7b. This region is characterized by a very
high value of x2 [0.9,1] and a quite large interval for x1 [−
1, 0.4]. The optimal region of the GORp is contained in the
confidence region obtained for the ISp. GORp determines a
much smaller region of the parameters, and it also provides
information on the utility values expected in this specific
region. In the ISp case, the final output of the procedure was
a set of points (x1, x2) resulting from an optimization prob-
lem. The utility values of the optimal points in the ISp are
not important in the final assessment because they depend on
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Fig. 6 Examples of distributions of weight (a), flash probability (b), and utility function (c) for a specific point in the region of the parameters. In
this case Tmelt � 0.8 and Phold � 0.8

the specific iteration of the bootstrap, i.e., on the specific val-

ues of the parameters
(
γ̂ ∗
i , β̂∗

i

)
. On the contrary, the GORp

determines the optimal region by looking at the utility values
distribution in all the bootstrap realizations. It is important
to note that utility is directly related to the quality of the
part, as it represents a compromise between the part weight
and the probability of flash formation. Therefore, the GORp
is a tool that can be used to determine a confidence region
for industrial applications because the value q has impor-
tant technological implications. The optimal solution to the
standard problems does not belong to the optimal region R
obtained by setting q � 96 mg. The standard optimal solu-
tion, shown as a green triangle in Fig. 7b, is characterized by
a median utility equal to 95.1 mg. This results from the fact
that the standard problem results from only one set of coef-

ficients
(
γ̂ , β̂

)
, while the GORp considers all the bootstrap

results after trimming.

Discussion

In this work, we have shown the possibility of exploiting
the concept of CR to solve optimization problems in the
industrial environment. The procedure relies on experimen-
tal data and the estimation of regression models to identify

the objective function and process constraints. Two methods
were developed: ISp andGORp.The ISp procedure generates
a real confidence region, that is, a region that has a (1 − α)%
probability of containing the true optimum of the problem.
The region obtained from this procedure, however, cannot
be used in a production environment substantially for two
reasons:

1. it is too large. The bounding box of all (1− α)B solutions
results in a range of melting temperature [− 1,1] and a
range of holding pressure between [0.6,1].

2. it contains a process condition (x1, x2) � (1,1) that has a
very large probability of producing a defective part

For this reason, a generalization of ISp was derived using
the same experimental data and the same regression relation-
ships. The new procedure has been defined as GORp, and it
cannot be strictly defined as a Confidence Region because it
does not provide information as “there is a (1 − α)% proba-
bility that this region contains the optimal solution”. GORp
exploits technological considerations to obtain a region of
parameters that allows obtaining a median value of utility at
least equal to a value specified by the experimenter. GORp
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Fig. 7 Median utility in the region of the parameters. Median utility surface (a) and contour plot (b). The confidence region of the optimal solution
is colored in yellow in (b) (Color figure online)

avoids recommending non-optimal conditions from a tech-
nological point of view and has the advantage of indicating
the median value of the response in the optimal region.

Since both procedures are based on experimental data and
the estimated regression models, the quality of the region
inevitably depends on the quality of the experiment. It is rec-
ommended to carry out an experimental design that gives the
possibility of estimating quadratic effects of the parameters
and not only linear ones.

Compared to the literature, the methodology proposed
in this work allows obtaining a region of process parame-
ters instead of a single combination. The standard methods
used in MODM, such as desirability, grey analysis, and
goal programming, provide only one set of optimal process
parameters. No information is provided on the effect of a
slight variation of these parameters on the quality of the final
parts.

In this regard, the benefits of the CR approach are remark-
able as the result provides the practitioner an indication of
howmuchprocess parameters canbevariedbefore a variation
in the process becomes important. For example, selecting (x1,
x2) � (0, 0.9) we expect a median utility of 96 mg (Fig. 7),
while (x1, x2)� (0.5, 0.8) results in amedian utility of 95mg.
Depending on the quality requirements of the specific com-
ponent, GORp provides all possible combinations of process
parameters that meet the requirement.

Conclusions

In this work, a new framework to build confidence region for
the optimal solution of a technological problem is provided.

The procedure starts with experimental data used to estimate
two functions: an objective function and a constraint. These
two equations are used in combinations with bootstrap and
data depth to build the confidence region. The procedure was
applied to an industrial problem in micro-injection mould-
ing, where the weight of the part must be maximized under
the constraint that a defect, called flash, occurs. For the first
time, such a procedure was applied to a technological prob-
lem, and, additionally, the procedure was generalized also to
consider a stochastic constraint. Two alternative procedures
were proposed (ISp and GORp). The ISp resulted in a large
confidence region which is not tolerable in an industrial envi-
ronment. Additionally, high-risk combination of parameters
(x1, x2) � (1, 1) belonged to the optimal region. For these
reasons, the GORpwas implemented. The GORp determines
the combinations of parameters that ensure the maximum
median utility.

The confidence region of the GORp indicates that holding
pressure should be set at high values (> 1250 bar) while melt-
ing temperature should be preferably selected between 190
and 220 °C. The two alternative procedures proposed select
almost similar confidence regions for the optimal value; how-
ever, the generalized one penalizes the large probability of
flash formation when both holding pressure and melting
temperature are set at their highest values. The GORp also
provides precise information on the utility value for each
combination of the parameters, which could not be obtained
in the ISp because the frequency of the optimal solutions var-
ied inside the confidence region. The GORp procedure has
a great advantage for the practitioner because it provides a
region of the parameters where the expected utility is known
based on the choice of the value q.
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Symbol Definition Value

P̂FL ASH
(
x, γ̂

)
Logistic regression equation describing the
probability of flash formation based on
experimental data

Equation (1)

ŵ
(
x, β̂

)
Least square estimate of the weight of the part
based on experimental data

Equation (2)

x Vector of the process parameters:
x � (x1, x2, x3, x4, x5)

β̂ Coefficient of the experimental weight function β̂
T � (88.114, 1.091, 5.693, 2.193, 0.884)

γ̂ Coefficient of the experimental constrain γ̂
T �
(−3.401, 1.257, 3.85, 2.285, 4.95, −3.482)

i Index of Bootstrap iteration

β̂
∗
i Bootstrap coefficient of the weight function at

iteration i

γ̂
∗
i Bootstrap coefficient of the constraint function

at iteration i

α Percentage of trimmed data 5%

B Number of iterations of the bootstrap procedure 100,000

B Set of the B combinations of bootstrap
coefficients

IB Set of indexes that were not trimmed out based
on data depth values

Ui (x, γ̂
∗
i , β̂

∗
i ) Utility function as defined in the ISp Equation (4)

U(x jk , γ̂
∗
i , β̂

∗
i ) Utility function as defined in the GORp Equation (6)

Ĉ R

[
x∗
opt

]

1−α

Confidence region for the location of the
optimal solution for the ISp

x∗
opt Optimal solutions for the ISp

u∗
opt Utility values of the optimal solutions of the ISp

R Optimal region of the parameters for GORp

xjk Generic grid point on which the utility function
of the GORp is evaluated

ũ jk Median value of the utility function for a generic
grid point xjk

q Reference value for the construction of the
optimal region in GORp

96 mg
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