Besides recent progresses in the physics-based modelling of fission gas and helium behaviour, the scarcity of experimental data concerning their combined behaviour (i.e., cocktail) hinders further model developments. For this reason, in this work, we propose a modelling methodology aimed at providing recommendations for accelerated experimental investigations. By exploring a wide range of annealing temperatures and cocktail compositions with a physics-based modelling approach we identify the most interesting conditions to be targeted by future experiments. To corroborate the recommendations arising from the proposed methodology, we include a sensitivity analysis quantifying the impact of the model parameters on fission gas and helium release, in conditions representative of high and low burnup.

On the intra-granular behaviour of a cocktail of inert gases in oxide nuclear fuel: Methodological recommendation for accelerated experimental investigation

D. Pizzocri;L. Luzzi
2022-01-01

Abstract

Besides recent progresses in the physics-based modelling of fission gas and helium behaviour, the scarcity of experimental data concerning their combined behaviour (i.e., cocktail) hinders further model developments. For this reason, in this work, we propose a modelling methodology aimed at providing recommendations for accelerated experimental investigations. By exploring a wide range of annealing temperatures and cocktail compositions with a physics-based modelling approach we identify the most interesting conditions to be targeted by future experiments. To corroborate the recommendations arising from the proposed methodology, we include a sensitivity analysis quantifying the impact of the model parameters on fission gas and helium release, in conditions representative of high and low burnup.
2022
Helium behaviour, Fission gas behaviour, SCIANTIX, Design of experiment, Inert gas cocktail
File in questo prodotto:
File Dimensione Formato  
Nuclear_Engineering_and_Technology_54_(2022)_1929-1934.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 701.33 kB
Formato Adobe PDF
701.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1213037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact