Background noise in biological cortical microcircuits constitutes a powerful resource to assess their computational tasks, including, for instance, the synchronization of spiking activity, the enhancement of the speed of information transmission, and the minimization of the corruption of signals. We explore the correlation of spontaneous firing activity of approximate to 100 biological neurons adhering to engineered scaffolds by governing the number of functionalized patterned connection pathways among groups of neurons. We then emulate the biological system by a series of noise-activated silicon neural network simulations. We show that by suitably tuning both the amplitude of noise and the number of synapses between the silicon neurons, the same controlled correlation of the biological population is achieved. Our results extend to a realistic silicon nanoelectronics neuron design using noise injection to be exploited in artificial spiking neural networks such as liquid state machines and recurrent neural networks for stochastic computation.

Role of Noise in Spontaneous Activity of Networks of Neurons on Patterned Silicon Emulated by Noise–activated CMOS Neural Nanoelectronic Circuits

Hasani, Ramin;Ferrari, Giorgio;Prati, Enrico
2021-01-01

Abstract

Background noise in biological cortical microcircuits constitutes a powerful resource to assess their computational tasks, including, for instance, the synchronization of spiking activity, the enhancement of the speed of information transmission, and the minimization of the corruption of signals. We explore the correlation of spontaneous firing activity of approximate to 100 biological neurons adhering to engineered scaffolds by governing the number of functionalized patterned connection pathways among groups of neurons. We then emulate the biological system by a series of noise-activated silicon neural network simulations. We show that by suitably tuning both the amplitude of noise and the number of synapses between the silicon neurons, the same controlled correlation of the biological population is achieved. Our results extend to a realistic silicon nanoelectronics neuron design using noise injection to be exploited in artificial spiking neural networks such as liquid state machines and recurrent neural networks for stochastic computation.
2021
patterned adhering scaffolds
cortical microcircuits
tonic spiking
silicon brains
neuromorphic engineering
noise assisted information processing
File in questo prodotto:
File Dimensione Formato  
Hasani_2021_Nano_Express_2_020025.pdf

accesso aperto

Descrizione: main
: Publisher’s version
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1212904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact