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Abstract

Background noise in biological cortical microcircuits constitutes a powerful resource to assess their
computational tasks, including, for instance, the synchronization of spiking activity, the enhancement
of the speed of information transmission, and the minimization of the corruption of signals. We
explore the correlation of spontaneous firing activity of & 100 biological neurons adhering to
engineered scaffolds by governing the number of functionalized patterned connection pathways
among groups of neurons. We then emulate the biological system by a series of noise-activated silicon
neural network simulations. We show that by suitably tuning both the amplitude of noise and the
number of synapses between the silicon neurons, the same controlled correlation of the biological
population is achieved. Our results extend to a realistic silicon nanoelectronics neuron design using
noise injection to be exploited in artificial spiking neural networks such as liquid state machines and
recurrent neural networks for stochastic computation.

1. Introduction

The correlation of biological and noise-solicited CMOS artificial spiking neurons between small distinct
populations of neurons is modulated and compared by controlling the number of inter-connected neurons and
synapses. The exploration of neuronal microcircuits [ 1-10] as the building blocks of the complex behavioral
motifs is not only supported by experimental evidence [ 11-15] but also substantiated by mathematical models
[16-18].

The study of biological neural circuits stands as an intermediate step towards comprehending and
controlling the building blocks of efficiently engineered artificial neural networks [19—22]. These neural circuits
function in the presence of measurable background noise and studies showed that this stochastic environment
acts as a resource for enhancing neural computations [23—31]. Computational models of neural circuits
confirmed these experimental observations [32—37]. Experiments on a randomly-wired network of spiking
neurons showed that a considerable amount of knowledge is stored inside the nervous system enabled by this
stochastic background noise [38—41].

In this regard, networks of stochastic spiking neurons have been used for solving constraint satisfaction
problems where noise is believed to play a key role in the problem-solving ability of the human brain [42-45].
For instance, neurons’ activity is correlated in the isolated regions of the auditory cortex to which the neuron
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belongs [46, 47]. The correlation among distinct groups of neurons (islands for brevity from now on) is directly
proportional to the number of interneuron connections and interneuronal correlation. Furthermore,
synchronization among neuronal populations in motor cortical regions where they communicate through
interneurons may play an important role in cognitive-motor processes [48, 49]. Propagation of spiking activity
amongst different neuronal modules has been studied and reviewed in [50-52]. Refinements of a natural
communication stimulus are permitted by the correlated neural activity in fish [53]. A mechanism by which
neural circuits effectively shape their signal and noise in concert has been demonstrated, enabling the
minimization of the corruption of signal by noise and by enhancing the speed of information

transmission [54, 55].

Previously, we separately explored the island size-dependence of synchronized activity in living neuronal
networks [56], the white noise enhancement of the transmission of spiking activity along a linear chain of
artificial neurons based on discrete components, and its inter-spike interval (ISI) by varying the amplitude of the
noise [35], and spike-timing-dependent plasticity in CMOS artificial neurons assisted by noise during training
[57]. CMOS artificial neurons [57—60] serve as an effective platform to emulate biologically plausible neurons
implementing universal functionalities speculated for toy block microcircuits and to build deep models [61].

In the present study we functionalize silicon patches to attach real neurons forming an SNN, and exploit the
role of noise [62] in a network of simulated CMOS artificial spiking neurons in order to reverse engineer the
features of the SNN of real neurons. Figure 1 graphically represents an overview of our research framework. To
observe the change of correlation rate of spiking activity of neurons among different islands of neurons by
adding interconnection neurons, we performed experiments with real in-vitro neurons. The spiking activity of
four islands of randomly-wired spiking neurons with sufficiently interconnected neurons is investigated. The
correlation of spiking activities drastically rises by increasing the number of pathways between islands where the
neurites can grow. We then exploit a nature-inspired physical disturbance such as noise (by adopting the same
ring topology of four-islands of the first part) on CMOS silicon neurons. The elementary blocks, including
CMOS neurons, excitatory and inhibitory synapses, are combined to constitute a network of spiking neurons
ready to investigate the influence of solicitation by a noise-injector circuit. The noise response of the silicon
neuron to both white and pink noise spectra is then thoroughly discussed. The silicon neuron microcircuits are
utilized to investigate the correlation of noise-assisted spiking activity of the four-islands topology in analogy
with biological neurons. As a final result, we demonstrate how the correlation of spiking activity among isolated sub-
networks ignited by distinct background noise is progressively increased?We show this by adding interconnection
elements between neurons of different sub-networks and more efficiently by adopting multiple synapses,
ensuring firing to more input neurons, by achieving the artificial microcircuit counterpart of the biological
network results.

2.Methods

In this section, we introduce our methods for studying noise propagation in distinct neuronal regions. First, we
discuss the experimental set-up for a group of biological neurons. In the second section, we design a quasi-
equivalent setting for the artificial model of the experimental part to perform predictions on the dynamics of the
real network.

2.1. Experimental setup for investigating noise propagation in biological neural circuits

Biological neurons, which are obtained from animal brains [63] or stem cell differentiation [64], can be
cultivated in-vitro under a defined physicochemical condition. Neurons are adherent cells, and hence an
appropriate scaffold is essential for their growth. A number of microfabrication methods, including
semiconductor lithography or soft lithography, have been utilized to engineer the scaffold to control the growth
area at single-cell or multi-cellular scales [56, 65-68].

After approximately a week in culture, neuronal networks begin to form synaptic connections and
spontaneously generate bursting activity that is highly synchronized within the network [29, 56]. We previously
showed using micropatterned rat cortical neurons that neuronal correlation in the spontaneous bursting activity
decreases with the size of the network [56]. This section uses a similar culture to show that correlation between a
group of living neurons can be regulated by altering the number of neurite guidance pathways that bridge
neuron islands. The experimental results and their analyses herein are obtained from independent datasets from
those presented in a previous publication [69].

The materials and methods used in fabricating micropatterned substrates, culturing primary neurons, and
recording spontaneous neural activity have been described previously [56, 68]. Briefly, poly — D — lysine and
2 — [methoxy (polyethleneoxy)propyl]trimethoxysilane were used as cell-permissive and non-permissive layers,
respectively, and were patterned on a glass coverslip using electron-beam lithography. The micropatterns used
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Figure 1. A General framework for modeling and exploiting noise-induced spiking activity from biological to silicon neurons. The
fine structure of the neural network elements, including neurons and synapses, together with their neural network structure, is shown
in biological, structural, and physical model representation. A) Anatomy of a single neuron with a zoom-in on synapses region (B) A
network of in-vitro neurons in a random topology connectome based on the artificial scaffold. (C) Four islands of biological neurons
linked to each other by a single pathway for interneurons where we observe the propagation of the correlation of spiking activity of
single neurons. (D) Structural representation of a stochastic model of spiking neurons and chemical synapses. (E) Representation of a
network of 16 neurons randomly connected. The network design is inspired by the structural topology used by IBM TrueNorth [70].
(F) Structure of four islands of randomly connected CMOS spiking neurons (here shown isolated from each other). We simulate the
circuital analogous of the experiment performed on real neurons by CMOS SNNs exposed to white noise. (G) Stochastic model of
spiking neuron designed in a 0.35 jum CMOS technology together with the designed CMOS synapses. (H) Network of 16 CMOS
neurons and 256 synapses designed ina 0.35 ;zm CMOS technology. The network is designed such that any arbitrarily many-to-many
topology can be implemented. (I) 4 islands of CMOS neurons and synapses. The network consists of 64 neurons and 1024 synapses. (J)
output response of a biological and a CMOS neuron to the white noise signal. (K) Raster plot of the spiking activity of single neurons of
the network of (H), where a white noise source excites one neuron. (L) Raster plot of the spiking activity of 64 neurons of the network
of (I), where neurons of each island are excited by a distinct source of white noise.

in the current experiment consisted of four square islands of 200 x 200 zm?and 5 yum-wide lines that
interconnect the island. Three geometries with a different number of interconnecting lines were compared, i.e.,
no-bond and triple-bond structures, which have zero and three lines between a pair of islands.

Primary neurons were obtained from embryonic rat cortices, plated on the micropatterned coverslips, and
cultured for ten days. Then, the cells were loaded with the fluorescence calcium indicator Fluo-4 AM (Molecular
Probes), and their spontaneous activity was measured by calcium imaging. Images were obtained every 200ms
for 6 or 9 min using an inverted microscope (Nikon Eclipse TE300) equipped with a 20 x objective lens
(numerical aperture, 0.75) and a cooled-CCD camera (Hamamatsu Orca-ER). The image sequences were later
analyzed offline using the Image] (NIH) and custom-written Perl programs [56].

Representative phase-contrast micrographs of living neuronal networks grown on the micropatterned
substrate are shown in figures 1(B) and 1(C). Neurons adhered and grew neurites only on the permissive
domains. Very little non-specific adhesion or neurite growth was observed in the non-permissive area. The
number of cells in each network was counted from the images. It was evaluated to be 148, 143, and 154 cells for
the no-bond, single-bond, and triple-bond structures.

Next, spontaneous neural activity was measured by fluorescence calcium imaging, and the effect of changing
the number of interconnections between neuronal islands was analyzed by evaluating the Pearson correlation
coefficient. The correlation coefficient of neuron pairs is calculated using the Pearson correlation coefficient
equation described in appendix B. We discuss our observations thoroughly in the Results section.
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2.2. CMOS artificial neural networks setting for quantifying the rate of correlated-activity in distinct
neuronal islands

To emulate the noise activation of biological neurons, we first define a biologically plausible silicon neuron
model so that response to electronic noise injection is realistic. The neuron is designed based on a simplified
Hodgkin-Huxley (HH) spiking neuron model [71], which is designed and simulated in a 0.35 ym CMOS
technology [72]. A sodium-potassium conductance-based model of spiking neurons biased in the sub-threshold
regime is implemented. Neurons are designed with a lower time-constant to spike three orders of magnitude
faster than real neurons (more details on the implementation are provided in appendix A). Such speed-mode
implementation allows faster data processing, requires smaller capacitor values, and as a result, reduces the
physical size of the circuit. To model abackground noise, we designed a voltage to current converter capable of
delivering a zero-mean white and pink current noise to the neurons (see appendix A). Typically, noise is
naturally present in CMOS devices, ranging from white and pink (1/f) noise [73], to telegraph noise [74-76], to
1/f'/? noise [77, 78], rooted in the atomistic scale. The most straightforward strategy consists of amplifying such
natural noise and exploiting it in the circuit by injection in the selected nodes.

Synapses are junctions where neurons communicate with each other. Chemical synapses can be either
excitatory or inhibitory. We adopted a synapse circuit model, called CMOS differential-pair integrator (DPI)
[79], to wire neurons.

To emulate and reverse-engineer the experimental system topology constructed from four neuronal islands
of biological neurons adhering stick to the patterned region, we designed and simulated a network of spiking
neurons comprising 64 silicon neurons and 1024 DPI synapses in the presence of white background noise.
Individual islands comprising 16 silicon neurons and 256 synapses are designed and are exposed to white noise.
Next, the correlation of spiking activity of the four neuronal islands is controlled by tuning the number of the
equivalent of interneurons connecting distinct neuronal islands and the number of synapses excited by the same
output interneuron. The observations are quantitatively accounted for by employing a correlation coefficient
matrix of stochastic events (Appendix B for methods). Figure 3(A) represents a network of 16 silicon neurons
and 256 reconfigurable synapses. To be consistent with networks of typical hybrid systems of real neurons on
artificial solid-state structures, we adopted a ratio between inhibitory and excitatory synapses in the range 5% to
10%. In our case, such a ratio is set to 8%. The output of each neuron is connected to 16 synapses presented ina
row in order to be able to connect to the other 15 neurons and themselves. The output of a neuron is connected
directly to the input of each synapse. The synapse output is connected to the input nodes of the next neurons
through an nMOS switch. By choosing whether the switch is closed or open, one can connect arbitrarily any
neuron to the others. White noise is applied through the V-I converter to each neuron. A single source of noise
(noise of an on-chip resistor) distributes the noise to all neurons of an island to emulate potential local
fluctuations affecting all the neurons similarly within the same neuronal island. A distinct noise generator
solicits each island to emulate distinct regions with no common local potential fluctuations.

A random network topology (figure 3(C)) is configured on the 16-neuron network. The random structure is
selected in each island by the random permutation function in MATLAB. Where n random synapse IDs are
selected out of 256 synapses in each neuronal island. We define four islands of such 16-neuron SNN as shown in
figure 3(B). Each island of neurons consists of different network topologies. In each island, 92% of the synapses
are excitatory and 8% inhibitory, which emulates a reasonable average ratio typical of realistic biological
networks of spiking neurons.

In figure 3(B), circles and hexagons represent neurons and synapses, respectively. The green synapses are
those activated. For instance, in row number 4 (R4) of island 1 (top left), the 10th synapse is green, indicating that
neuron N4 stimulates neuron N10 through that synapse. In the firstisland (top left), we implement a low-
density connection in a random topology By 25 connections; on the contrary, in the second island (top right), we
implement a higher density of 50 connections in order to demonstrate the influence of the variation of the
number of connections of each island on the correlation of the spiking activities. Such difference is reflected in
figure 5(A), where the correlation of island 1 is lighter than that for island 2.

We adopt the same random network topology on the third (bottom left) and fourth (bottom right) islands to
observe the variation of spiking activity of neurons when we inject uncorrelated sources of noise to the same
network topology. As described, all neurons in each island are connected to a single source of the noise.

3. Results

3.1. Correlation-rate of spontaneous activity of groups of neurons

The correlation coefficient matrix is calculated for three different experiments and graphically represented in
figure 2. In the no-bond structure, the correlation of the synchronized bursting activity was high only for
neurons belonging to the same island and were otherwise nearly zero. By connecting the islands of biological
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Figure 2. The Pearson correlation coefficient matrix of 4 islands of biological neurons represented in figure 1(C). The color-bar shows
the amount of correlation coefficient from uncorrelated regions (blue) to highly correlated areas (dark red). In case A, the islands are
not connected and the correlation is significant only for neurons within the same island. In cases B and C, the correlation progressively
increases by adding 1 and 3 pathway connections respectively among the islands in a ring topology.

neurons by an individual connection, the correlation among different islands is switched. Finally, in the triple-
bond structure, the correlation is high across nearly all neuron pairs.

These results confirm the findings reported in [69] and were used as reference datasets for the numerical and
circuit modeling (see sections 3.2 and 3.3).

The observations indicate that the neural correlation can be controlled using micropatterned substrates by
changing the number of interconnections. This is in agreement with a previous work which showed that the
likelihood of an activity being transferred between two neuronal populations increased with the number of
interconnecting micro tunnels in a microfluidic device [80].

The spontaneous activity in biological neuronal networks is triggered by the spontaneous release of either
synaptic vesicles or ion channel stochasticity, which temporally induce fluctuation of the neuronal membrane
potential. Itis interesting from an engineering point of view that up to 80% of the metabolic energy consumed in
the brain seems to be used in maintaining the spontaneous activity [81]. Their possible role in neural
computation has been suggested to include learning [23], event directionality [24], stochastic resonance [25],
management of binocular rivalry [27], and coherence [29], just to mention some examples. In the next section,
we design an artificial version of this experiment to evaluate and predict some attributes of the system.
Notwithstanding, a full understanding of the functional role of such an energy-consuming background activity
awaits further research.

3.2. Simulation of Islands of Silicon Neurons with Internal Low-Density Connectivity

We aim to characterize the influence of spike trains generated by distinct regions and observe how the
correlation among spiking activity is created thanks to the propagation of the signaling on the receiving neuron’s
surrounding network. The correlation propagates thanks to interneurons’ equivalent, and synchronization of
spiking activity is rapidly achieved when few inter-connective synapses are employed.

To investigate the variation of correlation between the spiking activities in different islands, we perform
simulations by using the network represented in figure 3(B).

In the first configuration, the islands of neurons are not mutually connected. By applying uncorrelated
current-mode white noise with a power of 200 pA /+/Hz to the islands for a simulation time of 240 s, we obtain
the spiking activity of the neurons represented in figure 3(D). As a result, we observe highly correlated firing
activity only from neurons of the same island.

In the second simulated configuration, four islands of neurons are connected in a ring topology through
interconnected synapses, such that island one is connected to island two by means of 8 one-to-one interneurons
via unidirectional synapses, in the same way, the island two is connected to island 4, the 4 to the 3, and the 3 to
theisland 1. In such ring topology, we achieved the spiking activity of the neurons represented in figure 3(E),
which shows correlation.

In order to assess the correlation quantitatively, we explore the correlation coefficient matrix. Figure 4
illustrates the correlation coefficient matrices of spiking activity of islands of silicon neurons in the mentioned
simulations. In matrices, the correlation spectrum color-bar represents uncorrelated regions with blue and
highly correlated regions with dark red.

When the islands are not connected (figure 4(A)), as a result of applying the same noise to all the neurons of
an island, mutually connected by synapses, the self-spiking activity of the islands is highly correlated while, like
in the case of biological neurons, neuron activity across different islands is not correlated.

When islands are connected (figure 4(B)) using synapses, each island’s activity spreads to neighboring
islands, a high correlation involves all the neurons of the network. Qualitatively, to observe a similar correlation
to the biological case with only one pathway, eight one-to-one connections are needed, suggesting that either
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Figure 3. Injection of noise into a network of spiking neurons. (A) Network of 16 neurons (ellipses on the bottom of the diagram) and
256 synapses (circles). One V-1 converter (diamond boxes, the bottom of the diagram) has been utilized for each neuron. (B) Four
islands of 16 neurons employed for simulation of noise-induced activity and control of correlation by adding connections equivalent
to interneurons. Neurons of the same island are connected to the same source of white noise, which is, in turn, uncorrelated to the
white noise sources igniting the other islands. 8% of synapses are inhibitory. (C) A random topology realized on the 16-neuron
network shown in part A. Thick black arrows represent inhibitory synapses, while other arrows are excitatory synapses. (D) Spiking
activity of the neurons of the four islands network excited by white noise. The black dots show the spike event of a neuron. Neurons
N1-N16 belong to the first islands, N17-N32 to the second island, N33-N48 to the third island, and N49-N64 to the fourth island. The
spiking activity of neurons is correlated within the same island and uncorrelated between distinct islands. (E) Spiking activity of the
neurons in case of D when the islands are connected through 8 distinct interneurons. The spiking activity of neurons of distinct islands
becomes correlated.

several neurites connect the biological neuron islands or several synapses per neuron are involved. The
condition of multiple synapses associated with the same neuron is developed in the next section.

3.3. Simulation of islands of neurons with multiple synapses
To achieve a high correlation between the island by employing only a few neuron connections, the micro-
connectome of the artificial interneurons here consists of adding multiple synapses to the interneurons.

Figures 5(A) to (D) represents the correlation matrix of the activity of the neurons in cases of isolated islands,
which refer to the connections represented in 5(E) to (H) respectively. Cases A-E provide the background of the
correlation when there is no connection among neurons of distinct islands. Cases B-F represent a limiting case
when one neuron excited by three synapses solicits 15 over the 16 neurons of the neighboringisland (3 x 15).It
is worth noting that even if almost all the neurons of the next island are solicited, the correlation does not
saturate among distinct islands. At a microscopic level, we may interpret this due to the difficulty of affecting by
an individual spiking signal the activity within the island, whose neurons are synchronously solicited by the local
noise. The case C-G with three connections of kind (3 x 8) shows a much stronger correlation even if the
number of synapses to input neurons on the next islands are cut off a half, thanks to the triple excitation
connection. Such a condition provides a result that is closer to the 3N pathway connection of biological islands.
The difference from the previous case can be interpreted by the combined action of more distinct input signals
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Correlation of spiking activity in networks of silicon neurons
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Figure 4. Pearson correlation of spiking activity of networks of artificial neurons. The color-bar shows the correlation coefficient from
uncorrelated regions (blue) to highly correlated areas (dark red). A) Pearson correlation of the activity of a network of silicon neurons
where islands are not mutually connected. Spiking activity is highly synchronized inside each island but almost uncorrelated among
differentislands. B) Correlation coefficient matrix when the island of silicon neurons (represented in (figure 3(E))) are communicating
with each other by eight one-to-one interneurons in a ring topology.
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Figure 5. Pearson correlation of spiking activity of networks of artificial neurons. In all graphs, the color-bar shows the correlation
coefficient from uncorrelated regions (blue) to highly correlated areas (dark red). Correlation activity in islands of (A) silicon neurons
isolated from each other. (B) silicon neurons with one interneuron connection in a ring topology of kind (1 x 3 x 15). (C) Silicon
neurons with three interneuron connections (3 x 3 x 8) in aring topology, (D) silicon neurons with three connections
interconnectivity (3 x 9 x 15), (E) Silicon interneuron topology without connections among islands, (F) case of one connection per
pair of islands linked as a ring, of kind (1 x 3 x 15) (G) case of three connections per pair of islands linked by (3 x 3 x 8), which
shows a correlation matrix similar to biological network with a triple bond. H) The limiting case of three connections of kind

(9 x 3 x15).

interfering with the synchronous activity within the island, therefore partially breaking its correlated spiking
activity and therefore leaving room for the action of the other input signals. Finally, the case D-H of three

(9 x 15) connected neurons represents again a limiting case where almost all the neurons of the next islands are
fed, which exhibits even higher (but not saturated despite the connection to all the neurons of the next island)
correlation. The lack of saturation is a consequence of having imposed distinct noise fluctuations on all the
neurons of each island, a simplified biological system model. The biological system and the artificial CMOS
system ignited by noise, as discussed above, behave very similarly. The findings suggest that in the biological
islands, the spontaneous connections along the pathways by neurites of neurons in distinct islands, despite the
difficulties of the process adopted from Sect. 2, are very likely and very efficient. In the spirit of indicating future
refinements of the noise injection in artificial neuron system, we also observe that the assumption that a single
local noise affects the sub-populations of neurons may be relaxed by reducing the influence radius of each source
of noise to only first neighbors.
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4. Conclusions

To conclude, we prepared and experimentally characterized a biological system comprising four populations of
about 25 neurons each, attached to engineered scaffolds, and mutually connected in a ring topology by pathways
where neurites can grow. Neurons adhered and grew neurites only on the permissive domains defined by the
scaffolds and the pathways. The number of neurites is tuned by varying the number of available pathways to
control the degree of correlation of the spiking activity among the neurons of distinct populations. Three
connections per pair of populations are sufficient to spread an almost complete correlation of the whole
network. Next, we designed and simulated the artificial version of such a system by an artificial network of
CMOS silicon neurons operating in speed mode. The silicon system includes both excitatory and inhibitory
synapses, and it is equipped with interneurons to enable communication between distinct islands, which induce
spontaneous firing into higher correlation. We proposed a robust implementation of artificial silicon neurons by
designing compact electronic CMOS microcircuits equipped with white and pink noise generators. We
employed noise to activate the spontaneous firing activity of the neurons, and we characterized the statistics of
the response of individual neurons to noise. Finally, the simulations of a ring of four noise—activated silicon
islands are assessed by varying the number of interneurons and synapses. The correlation between distinct
islands is more effectively increased by adding synapses to interneurons than additional independent
interneurons. The results observed on the artificial neuron system suggest that the biological network is effective
in the formation of synapses during its growth after the adhesion process on the micropatterned substrate.
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Appendix A. Design of circuits used as network elements

A.1. Fast-mode (HH) CMOS Silicon Neuron

Circuit of figure 6(a) realizes a sodium-potassium conductance-based model of spiking neurons biased in sub-
threshold regime [72]. Capacitor C,, stands for the membrane capacitance. When a positive input current
stimulates the capacitance, it starts to be charged, and consequently, the membrane potential, V,,,, increases.
When V,,, reaches Vﬁ?a, transistor M1 turns on and sinks current Is,. The current I, is mirrored by the
transistor M4 and creates the sodium activation current, Iy, which builds up the up-swing of the action
potential. Simultaneously, I, is also mirrored by the transistor M5 to charge the capacitor Cy;, thus increasing
exponentially the current I of the transistor M6. Therefore, V;,, quickly drops to its resting potential. The
threshold of activation of the sodium conductance is set by V% . It controls the threshold of the firing of the
neuron. Pulse width of the spike is controlled by In;* through V7i* . The neuron’s refractory period is set by the
voltage V controlling the current I, of the transistor M7. The neuron is designed such that it fires three orders of
magnitude faster than the biological neurons. This has been obtained using small value capacitors

(C,,, = Cy = 500fF) with a beneficial effect on the area occupation. The size of a single CMOS neuron is

35 x 35 um?, six times smaller than previous implementations [82, 83].

A.2. Excitatory CMOS Silicon Synapse

Biological synapses are modeled by an exponentially decaying time-course, having different time constants for
different types of synapses [85]. In order to implement a silicon synapse, we have used a current-mode low-pass
filter described by a first-order differential equation of the type:

l=—-1 + Lin (D

where I stands for the output current, 7 is the constant time of the synapse and I, represents the input stimulus
to the synapse, [85]. The time constant is three orders of magnitude faster than that of biological synpses to be
compatible with the silicon neuron. The differential-pair integrator (DPI) circuit [79] shown in figure 6(b) is
designed as an excitatory synapse. Voltage-spikes from the presynaptic neurons arrive at the input-transistor,
QMN;,;, and are converted into current-inputs. By applying trans-linear principle in which, the sum of transistor
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Figure 6. Schematic of the network elements. (a) CMOS implementation of a fast-mode sodium-potassium neuron. The neuron
circuit comprises a voltage-gated sodium conductance channel (red), a voltage-gated potassium channel (light blue), a coupling
element between the sodium and potassium channels (green) and a refractory period tuner (yellow). The voltage, V},,, on capacitor C,,
is the membrane potential. Biasing voltages Vi, VI and Vp set the threshold for firing, pulse width and refractory period of the
action potential, respectively. The value of capacitors together with input current I;,, determines the frequency of firing of the neuron.
(b) CMOS implementation of an excitatory synapse using a current-mode log-domain CMOS differential-pair integrator (DPI) [79].
(c) Complementary DPI synapse circuit designed and utilized as inhibitory synapse. (d)A CMOS voltage to current (V-I) converter
with a very low output dc current designed for converting the thermal noise of a resistor into a zero-mean white noise current. The V-I
converter circuit consists of a modified Howland current source structure (red) [84] together with an integrator(blue). The current
noise is applied as input to each neuron in order to induce stochastic behavior of spiking neurons.

voltages can be replaced by the multiplication of their currents [86], and by writing the current-voltage
relationship of the capacitor C;, the dynamics of the circuit can be presented as:

@)

. . U,
where the time constantis 7 = =

in which C; represents the synapse capacitor, k is the sub-threshold slope

factor and Uy stands for the thermal voltage. Note that by adjusting the value of the synapse capacitor, C,, and I,
one can control the time constant of the synapse.

A.3. Inhibitory CMOS Silicon Synapse

The inhibitory synapse consists of a complementary version of the excitatory synapse shown in figure 6(b).
Figure 6(c) represents the inhibitory synapse circuit. The working principle of such a circuit is similar to that of
an excitatory synapse. All nMOS transistors are replaced with pMOSs and vice versa. At the input of the
inhibitory synapse, a CMOS inverter circuit consisting of the transistors indicated as QP0 and QNO are used to
invert the upcoming voltage-spikes from the presynaptic neuron. Eventually, an inhibiting current pulse L, is
generated at the circuit’s output once the synapse gets stimulated from a presynaptic neuron.

9
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A.4. Current Noise Generator

Many methods to implement integrated noise generators are reported in the literature based on the direct
amplification of the thermal noise of a resistor [87], oscillator-sampling architectures [88], and deterministic
chaos [89]. The output of such noise generators is a voltage with the desired power spectral density. To injecta
current noise compatible with the silicon neuron, the two-stage voltage-to-current converter shown in

figure 6(d) is designed. The output current should be in the range of hundreds of nA, at zero-mean, independent
of the neuron’s input voltage and with a bandwidth up to a few MHz to allow the operation of the neurons in
speed-mode. To satisfy all these requirements, we have designed the bi-directional current source structure
shown in the red box of figure 6(d). A Howland architecture [84] is used and specifically modified to have a very
high output impedance (in the range of tens of G{2), maintaining compatibility with standard CMOS
technology. The large resistors required by the standard Howland circuit are substituted with the small value
capacitors (100fF) C2-C5. To provide DC feedback to the operational amplifier UAmp2, we add the transistors
QM1 and QM2 in parallel to C4 and C5, respectively. They are used as pseudo-resistors [90] to have a high
resistance (hundreds of G€2) occupying a small silicon area. In addition to a high output impedance, the pseudo-
resistors implement an effective AC coupling that reduces the mean value of the injected noise to less than 1pA
for anoise current as large as a few ptA. rms The modified Howland circuit converts the input voltage into a
current with a conversion factor given by the admittance of capacitor C2. Thus the output current would
increase with the frequency given a white noise as input. To recover a flat frequency response from the noise
source to the output current, the voltage noise source is first amplified with the integrator stage shown in blue in
figure 6(d) and then converted into a current with the modified Howland circuit. An additional pseudo-resistor
implemented with QI avoids the saturation of the operational amplifier UAmp1 in the integrator stage, assuring
aDC feedback path. The power spectral density of the output current results V,,/R17 - (C2/C1)?, where V,, is the
input voltage noise.

Such circuit is able to convert a voltage noise with a non-zero mean in a zero-mean white or pink current
noise compatible with the silicon neurons above. The physical source of the noise is a resistor followed by a
voltage amplifier as in [87]. White noise is obtained by amplifying the thermal noise of a non-biased resistor. By
forcing a current through the resistor, a pink noise (1/fnoise) proportional to the current’s square is generated
[91], amplified and used as input of the voltage-to-current converter. The gain of the voltage amplifier is tuned to
change the power of the current noise injected in the neuron. Tuning of the power has been obtained with an
ideal voltage amplifier that assures a frequency response independent of the power noise to simplify the
comparison of the simulation results with different noise amplitudes.

Appendix B. Correlation coefficient matrix calculation

We aim to mathematically characterize the influence of spike trains generated by the neurons of each island and
observe how the correlation among spiking activity is created. For this purpose we use Pearson correlation
coefficient of two random variables which is a linear measure of their dependence [92]. If each of the variables
has N samples, the Pearson correlation coefficient is defined as:

i~ MA)(Bi — HMp
OA OB

1 M A
A, B) =
p(A, B) N—1,§( ) 3)

where 14 and 04 are the mean and standard deviation of A, respectively, and pg and o are the mean and
standard deviation of B. Correlation coefficient can be written in terms of covariance of A and B:

A, B
p(A, B) = (C))
0pA 0B
The correlation coefficient matrix of two random variables for all pairs of variables as the following:
_ (p(A, A) pA, B)) )
p(B, A) p(B, B)

A and Bare directly correlated to themselves thus the diagonal entries of the matrix are 1. The matrix is
symmetric such that p(A, B) = p(B, A)
1 A, B
R— p( ) (6)
p(B, A) 1

Since spiking activities of the neurons inside the 64 neuron network are random variables, we can simply
build their correlation coefficient matrix (64 x 64) in order to find their dependence quantitatively. For
calculating the correlation coefficient matrix of the spiking activity of neurons, we utilize MATLAB function
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corrcoef(X).Itreturns the matrix of correlation coefficients for X, where the columns of X represent random
variables and the rows represent the samples.

Appendix C. Quantification of the noise-response of a single CMOS neuron

In this section, we investigate the white and pink noise-response of a single Hodgkin-Huxley (HH) spiking
neurons [71] which is designed and simulated in a 350 nm CMOS technology [57, 72]. A sodium-potassium
conductance-based model of spiking neurons biased in the sub-threshold regime is implemented. Neurons are
designed with alower time-constant to spike three orders of magnitude faster than real neurons (more details on
the implementation are provided in appendix A). Such speed-mode implementation allows faster data
processing and carries as a by-product a decrease of the capacitor values used in the circuit, resulting in a
reduction of its size. To model the background noise, we designed a voltage to current converter capable of
delivering a zero-mean white and pink current noise to the neurons (see appendix A). In general, noise is
naturally present in CMOS devices, from white and pink (1/f) noise [73], to telegraph noise [74], to 1/f'/? noise
[77]. The most straightforward strategy consists of amplifying such natural noise and exploiting it in the circuit
by injection in the selected nodes. We now turn to the response of a single silicon neuron to the input noise to
address the stochastic nature of the spiking activity, the inter-spike interval (ISI) distribution of the spiking
activity, and the relationship between input current noise amplitude and the spiking rate of the neuron,
respectively. Two transient 50 ms simulations of the silicon neuron are performed in Cadence and Spectre
simulator, where white and pink-noise are injected into the neuron. The RMS amplitude of the current noise in
both cases is equally set to 1.5 pA. Such noise value causes the neuron to generate an adequate spike rate to
perform ISI and inter-train intervals (ITI) analysis. As a result, one can explore the features of the neuron’s
responses to different noise spectrum signals and compare how the inter-spike intervals IST and ITI are affected.
Figure 7(A) shows the power spectrum of the current noise employed for the simulations. The noise spectrum
covers the operating frequency of the silicon neuron (1IMHz) and starts from a frequency much lower than the
typical spiking activity, shown in figure 7(C) for white and pink noise.

ISI distribution of the spiking activity of a neuron helps quantify the neuron’s electrical properties such as its
refractory period, mean-firing rate, and randomness of the spiking pattern, and therefore of the network [93].
Figure 7(D) describes how the number of spike events varies upon increasing the amplitude of the input noise.
Normally, the silicon neuron spikes with an amplitude of 2.5V when a deterministic current stimulates it. For
detecting a spike, a threshold voltage above which the counter identifies a spike is determined as follows.

Figure 7(D) includes the trend of the number of detected spikes versus injected input noise for different spike
detection thresholds. Counting stabilizes for the detection threshold voltage of 1 V. For a threshold of less than 1
V, random fluctuations would be considered spike events, therefore, affecting relevant information. Figure 7(E)
shows the ISI histogram for the 50 ms transient simulation of the silicon neuron by injecting a zero-mean white
noise to its input. The simulation is repeated for four different amplitudes of the injected input white noise
ranging from 350 to 600 pA/ v/ Hz. By increasing the amplitude of the noise, the histogram is denser and shifted
to shorter time intervals. The vertical line shows the natural period of spike activity of the neuron in case of a
constant input current, with amplitude equivalent to the noise RMS values injected in the simulations. A high
number of spike events lay on the left side of their corresponding no—noise simulation results. Notice that the
cross point of each histogram with its corresponding no—noise condition happens approximately at the same
spike rate. ISI and ITI of the spiking activities of the silicon neuron between the case of white and pink noise
stimuli are compared in figures 7(E) and (F). The pink noise makes a longer tail on the histogram than the white
noise in agreement with other reports [94]. Furthermore, the histogram in the case of white noise is much denser
than the one in pink noise. This implies that the white noise stimulus increases the excitability of a neuron within
its natural refractory period at a higher rate than the pink noise stimulus. In addition to analysis on the ISI
distributions, we also plot the I'TI histograms to see how different noise sources affect the propagation of a train
of spike events. For both white and pink noise stimuli, the distribution of spiking activity is approximately
concurrent. For the simulation of the correlation among the islands discussed in section 2.2, we adopt white
noise, which proves more effective to induce the neurons’ excitation from the ISI point of view.
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Figure 7. Injecting noise into an individual silicon neuron. (A) The power spectrum of the white and pink noise. The circuital
constraints determine limitations on the noise bandwidth. (B) Flowchart of the simulation of a single neuron stimulated by noise. (C)
Response of the silicon neuron to white and pink noise input current, respectively, with an RMS amplitude of 1.5 ;2 A. (D)
Determination of the threshold voltage to identify all the spikes induced by the noise injection. The counting stabilizes for a threshold
voltage of 1 V. (E) Inter-spike intervals (ISI) histogram for the 50 ms transient simulation of the silicon neuron, applying a zero-mean
white noise to its input. The histogram is denser by increasing the amplitude of the noise and shifted to the shorter time intervals. This
is due to the reduction of the relative refractory period of a neuron due to the increase of the excitability of the neuron in the case of a
stronger input stimulus. The vertical lines show our silicon neuron’s response in case of a constant input current with an amplitude
equivalent to the noise RMS values injected in the circuit. (F) Comparison of the ISI of the spiking activity of the neuron stimulated by
white and pink noise, respectively. (G) comparison of the inter-train intervals (ITT) histogram of the spiking activities of the neuron
under white and pink noise stimulation, respectively.
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