Optofluidic time-stretch quantitative phase imaging (OTS-QPI) is a potent tool for biomedical applications as it enables high-throughput QPI of numerous cells for large-scale single-cell analysis in a label-free manner. However, there are a few critical limitations that hinder OTS-QPI from being widely applied to diverse applications, such as its costly instrumentation and inherent phase-unwrapping errors. Here, to overcome the limitations, we present a QPI-free OTS-QPI method that generates "virtual" phase images from their corresponding bright-field images by using a deep neural network trained with numerous pairs of bright-field and phase images. Specifically, our trained generative adversarial network model generated virtual phase images with high similarity (structural similarity index >0.7) to their corresponding real phase images. This was also supported by our successful classification of various types of leukemia cells and white blood cells via their virtual phase images. The virtual OTS-QPI method is highly reliable and cost-effective and is therefore expected to enhance the applicability of OTS microscopy in diverse research areas, such as cancer biology, precision medicine, and green energy.

Virtual optofluidic time-stretch quantitative phase imaging

Petra Paiè;
2020-01-01

Abstract

Optofluidic time-stretch quantitative phase imaging (OTS-QPI) is a potent tool for biomedical applications as it enables high-throughput QPI of numerous cells for large-scale single-cell analysis in a label-free manner. However, there are a few critical limitations that hinder OTS-QPI from being widely applied to diverse applications, such as its costly instrumentation and inherent phase-unwrapping errors. Here, to overcome the limitations, we present a QPI-free OTS-QPI method that generates "virtual" phase images from their corresponding bright-field images by using a deep neural network trained with numerous pairs of bright-field and phase images. Specifically, our trained generative adversarial network model generated virtual phase images with high similarity (structural similarity index >0.7) to their corresponding real phase images. This was also supported by our successful classification of various types of leukemia cells and white blood cells via their virtual phase images. The virtual OTS-QPI method is highly reliable and cost-effective and is therefore expected to enhance the applicability of OTS microscopy in diverse research areas, such as cancer biology, precision medicine, and green energy.
2020
File in questo prodotto:
File Dimensione Formato  
APL_Photon.pdf

accesso aperto

: Publisher’s version
Dimensione 7.68 MB
Formato Adobe PDF
7.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208522
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact