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ABSTRACT
Optofluidic time-stretch quantitative phase imaging (OTS-QPI) is a potent tool for biomedical applications as it enables high-throughput
QPI of numerous cells for large-scale single-cell analysis in a label-free manner. However, there are a few critical limitations that hinder
OTS-QPI from being widely applied to diverse applications, such as its costly instrumentation and inherent phase-unwrapping errors. Here,
to overcome the limitations, we present a QPI-free OTS-QPI method that generates “virtual” phase images from their corresponding bright-
field images by using a deep neural network trained with numerous pairs of bright-field and phase images. Specifically, our trained generative
adversarial network model generated virtual phase images with high similarity (structural similarity index >0.7) to their corresponding real
phase images. This was also supported by our successful classification of various types of leukemia cells and white blood cells via their virtual
phase images. The virtual OTS-QPI method is highly reliable and cost-effective and is therefore expected to enhance the applicability of OTS
microscopy in diverse research areas, such as cancer biology, precision medicine, and green energy.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5134125., s

I. INTRODUCTION

Optofluidic time-stretch quantitative phase imaging (OTS-
QPI) is a potent tool for biomedical applications as it enables high-
throughput imaging flow cytometry of numerous single cells at
>100 000 cells/s in a label-free manner.1–6 OTS-QPI reconstructs the
bright-field and quantitative phase images of flowing cells from the
spectral interferograms of temporally stretched optical pulses that
contain cellular profiles, such as morphology, refractive index, and
thickness.7–13 It inherits the merit of OTS to image a large het-
erogeneous population of flowing cells while bypassing the need
for a high-speed camera3,14–25 and also takes advantage of QPI
to obtain biologically relevant structural information by measur-
ing the refractive index and thickness of each cell. By combining
these powerful capabilities, OTS-QPI is a highly promising tool for

large-scale single-cell analysis and has been utilized in a diverse
range of biomedical applications, including evaluating microalgal
culture conditions,1,2 screening blood cells,4 investigating spleen
tissue,5 and characterizing cellular protein concentrations.6

Unfortunately, a few critical limitations of OTS-QPI must be
addressed before its wide deployment in various fields. First, OTS-
QPI inevitably requires complex optical instrumentation and fine
optical alignment as it employs an interferometer, which is prone to
mechanical vibrations and misalignment, to generate phase images.
Second, since the phase information on target objects (e.g., cells)
normally lies in the high-frequency region of the temporal inter-
ferograms, a costly wide-bandwidth photodetector and a high-speed
analog-to-digital converter (ADC) are needed to fully acquire the
high-frequency signal. Correspondingly, the high sampling rate of
the ADC results in large data volume that is hard to transfer and
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FIG. 1. Workflow of the virtual OTS-
QPI method. (a) Training process of the
GAN. (b) Generation of the virtual phase
images through the trained generator.

store. Third, the efficiency of recovering phase images from the
temporal interferograms is significantly suppressed by inevitable
high-frequency noise,2 which induces phase-unwrapping errors that
are difficult to correct. In addition, special algorithms are usually
required for phase image recovery, leading to a significant increase in
computational cost. These limitations hinder OTS-QPI from being
widely applied to diverse applications.

In this paper, to bypass the above limitations, we present a QPI-
free OTS-QPI method that generates “virtual” phase images from
their corresponding bright-field images by using a deep neural net-
work trained with numerous pairs of bright-field and phase images.
The training process of the method, which we call virtual OTS-QPI,
and the process of generating virtual phase images are shown in
Figs. 1(a) and 1(b), respectively. Consequently, the virtual OTS-QPI
method can perform OTS-QPI without the need for actual phase
measurements. This concept was driven by the rapid development
of deep learning and convolutional neural networks (CNNs) in the
commercial sector, which offered a practical solution to the limita-
tions. Specifically, our trained generative adversarial network (GAN)
model enables the generation of virtual phase images with high
similarity (structural similarity index >0.7) to their corresponding
real phase images. Also, we demonstrate the high-accuracy (>96%)
classification of three types of leukemia cells (HL-60 cells, Jurkat

cells, K562 cells) and white blood cells based on their bright-field and
virtual phase images. The virtual OTS-QPI method is highly reliable
and cost-effective and is therefore expected to enhance the applica-
bility of OTS microscopy in diverse research areas such as cancer
biology, precision medicine, and green energy.

II. MATERIALS AND METHODS
A. Optofluidic time-stretch quantitative phase
imaging (OTS-QPI)

A frequency-shifted OTS-QPI setup was used for the simul-
taneous acquisition of bright-field and quantitative phase images
of single live cells, which were used to train the GAN. The exper-
imental setup is schematically shown in Fig. 2(a). A home-built
ytterbium-doped fiber laser was mode-locked and used as a light
source, with a repetition rate of 33.97 MHz, an average output power
of 20 mW, a center wavelength of 1030 nm, and a spectral band-
width of 23.7 nm. Each optical pulse from the laser was temporally
stretched by a 20-km-long dispersive fiber (Nufern, 1060-XP) with a
total group-velocity dispersion (GVD) of −380 ps/nm. The stretched
pulse was then amplified by an ytterbium-doped fiber amplifier
(YDFA) and split into the signal arm (up) and the reference arm
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FIG. 2. Experimental setup and detailed GAN architecture. (a) Schematic of the optical setup of frequency-shifted OTS-QPI with and without the reference arm. (b) Detailed
view of the microfluidic chip. (c) Architecture of the virtual phase image generator. (d) Architecture of the discriminator.

(down) at a ratio of 50:50. In the signal arm, the incident pulse was
spatially dispersed by using a diffraction grating (Thorlabs, GR25-
1210, 1200 grooves/mm) to form a one-dimensional (1D) rainbow
pattern and focused by using an objective lens (Olympus, LCPlan
N, 50×, NA0.65) onto the microfluidic channel, which is shown
in Fig. 2(b), such that the spatial profile of the flowing cell was
encoded onto the amplitude and phase of the transmitted pulse.
The information-carrying pulse was then recovered into the time
domain by using the symmetrical optical layout. In the reference
arm, the optical frequency was up-shifted by one-fourth of the repe-
tition rate of the laser (i.e., 8.49 MHz) by using two acousto-optic
modulators (AOMs) that were controlled by a home-built

phase-locked loop. The pulses from both arms were collected and
combined in another 50:50 fiber coupler to form a beat note, which
was subsequently detected by a photodetector, digitized by an oscil-
loscope (Tektronix, DPO71604B) at a sampling rate of 50 GS/s, and
recovered into bright-field and phase images with programs written
in MATLAB.

B. Generative adversarial network (GAN)
We used the GAN26–28 to transform bright-field images into

virtual phase images. The GAN has a unique design composed of
two networks: generator and discriminator. These two networks
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were trained in an adversarial way, as the generator generated vir-
tual phase images from bright-field images while the discriminator
tried to distinguish these generated images from the real images.
According to the feedback of the discriminator, the generator was
gradually optimized to generate high-quality virtual phase images
that would eventually be indistinguishable from the real images for
the discriminator. Also, the training process optimized not only
the generator, but also the discriminator. The constantly improving
discriminator forced the generator to focus on more essential and
abstract features that were emphasized by the discriminator such
that the generator was able to output high-quality images. By tak-
ing advantage of the generator–discriminator structure, the GAN
is superior to traditional CNN-based image translators as it adapts
to the training data and thus generates high-quality images, which
bypasses the problems (e.g., blurring) that originate from specific
image-comparison algorithms of other CNNs.29,30 Therefore, the
overall quality of the GAN-generated images generally surpasses that
of the images generated by other CNNs.

We constructed the generator based on the U-Net architec-
ture,31 which is illustrated in Fig. 2(c). The generator contained an
encoder and a decoder, which were designed in a symmetrical struc-
ture that contained eight convolutional blocks in each function. Each
block comprised a 4 × 4 convolutional layer, a batch normalization
layer, and an activation layer with the Leaky Relu (LRelu) activation
function. Skip connections were added between symmetric layers to
carry low-level features from the encoder to the decoder to prevent
information loss. In the generation process, a bright-field image of
size 256 × 256 × 3 was input to the encoder and compressed into
a 1 × 1 × 512 tensor at the end of the encoding path. This tensor
was input to the decoder and reconstructed back into a 256 × 256
× 3 virtual phase image at the end of the decoding path. It should
be noted that the pixel values of the generated phase image were
normalized to range from 0 to 1 due to the normalization opera-
tion. The generated virtual phase image was then evaluated by the
discriminator.

We adapted the PatchGAN architecture to construct the dis-
criminator,32 which is shown in Fig. 2(d). The network contained
a concatenation layer and five encoding blocks. Batch normaliza-
tion was applied to all blocks except the first and the last one. The
LRelu function was used as the activation function for the first four
blocks, while the Sigmoid function was used for the last one. Both the
bright-field and phase images with size 256 × 256 × 3 were merged
into a 256 × 256 × 6 tensor in the concatenation layer and input to
the encoding blocks. This merged tensor was eventually compressed
to a 30 × 30 × 1 tensor, which was passed through the Sigmoid
function to output a probability between 0 and 1. The ideal out-
put was 0 for the merged tensor of bright-field and virtual phase
images and was 1 for the merged tensor of bright-field and real phase
images.

C. Evaluation of image similarity
We used the structural similarity index (SSIM) to evaluate

the quality of the generated images as it is a common tool for
assessing images generated from GAN models.33–35 The SSIM is a
well-established algorithm that evaluates the similarity between two
images based on correlation, luminance, and contrast. Mathemat-
ically, the SSIM is determined by means, standard deviations, and

the covariance value of two images. Denoting the mean value as μ,
the standard deviation value as σ, and two images as x and y for the
real image and virtual images, respectively, the SSIM is defined as

SSIM(x, y) = (2μxμy + c1)(2μxy + c2)
(μ2

x + μ2
y + c1)(σ2

x + σ2
y + c2) ,

where μxy is the covariance value between two images. c1 and c2 are
two constants that are used to increase the stability of the evaluation.
The SSIM function scores the similarity of two images with a positive
value between 0 and 1, where 0 indicates that the generated image is
totally different from the real one and 1 indicates that the generated
and real images are identical.

D. Autoencoder (AE)
To examine the quality of the generated virtual phase images,

we constructed an autoencoder (AE) for high-accuracy image-based
cell classification.36,37 The AE shares the same structure as we applied
in our previous work.38 Specifically, the AE is composed of an
encoder, a decoder, and a classifier.39,40 The encoder consisted of
four hidden layers, while the decoder shared the same structure in
a symmetric way. Here, to eliminate the bias induced by different
value ranges of the real phase images, which contained true phase
shift values, and the virtual phase images (ranging from 0 to 1),
all phase images were normalized to range between 0 and 1 before
inputting them into the encoder. During the training process, the
encoder compressed images into 1024-dimensional vectors contain-
ing essential cellular information at the bottleneck layer from which
the decoder reconstructed the images. The classifier was connected
to the bottleneck layer to directly classify the images by the 1024-
dimensional vectors. When the loss of the AE stopped descending
for 6 epochs, the training process was terminated with all parame-
ters fixed. The optimized AE was then used to evaluate the images
in the test set to generate a confusion matrix. The corresponding
t-distributed stochastic neighbor embedding (t-SNE) plot was also
generated as a 2-dimensional projection of the 1024-dimensional
feature space.41

E. Microfluidic chip fabrication
The microfluidic chip used in this work was designed and

fabricated to form a stable, high-speed, and linear flow of single
cells in the microchannel for the image acquisition of the OTS-
QPI system. Specifically, two sheath flows and a sample flow were
injected simultaneously into the channel to form a laminar flow
condition such that cells in the sample flow were confined into
a single line on the focal plane by hydrodynamic focusing. The
microfluidic chip was fabricated using the standard soft lithogra-
phy method.42 Polydimethylsiloxane (PDMS, Dow Corning) was
poured onto the master mold on which the patterns of the chan-
nel had been developed. After healing at 80 ○C for 15 min, a small
piece of coverslip was placed on the PDMS layer right above the
observation area of each microfluidic channel in order to resist
the pressure inside the channel at high flow speed. The PDMS
was solidified with another 1-h heating process and was cut into
small pieces for fitting into the glass slides with the sample inlet,
sheath inlet, and outlet opened by a 25 G needle. The PDMS blocks
and the glass slides were treated with a plasma cleaner (Harrick
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Plasma) for permanent bonding. The dimensions of the microchan-
nel in the imaging area were 80 μm in width and 40 μm in height,
respectively.

F. Cell preparation
The leukemia cell lines used in this work, including HL-

60, Jurkat, and K562, were purchased from RIKEN Cell Bank,
incubated under normal conditions, and harvested for OTS-
QPI measurements. Specifically, the cells were incubated in
75 cm2 culture flasks (Corning, 430641U) with 5% carbon diox-
ide (CO2) at 37 ○C. RPMI-1640 medium (Sigma-Aldrich, R8758)
containing 10% fetal bovine serum (FBS, Sigma-Aldrich) and
1% Penicillin–Streptomycin solution was used as the culture
medium. For the flow cytometric measurements, the cells were
centrifuged at 400 g for 3 min, harvested, and resuspended
with phosphate-buffered saline (PBS) to a final concentration of
1 × 107 cells/ml.

The target cells in the blood samples were separated by den-
sity gradient centrifugation. For WBCs, 5 ml of blood was drawn
with ethylenediaminetetraacetic acid (EDTA) as the anticoagulant
from a healthy donor. The blood sample was carefully layered above
the 3-ml density gradient medium, Lymphoprep (STEMCELLS,
ST07851), in a 15-ml centrifuge tube. Then, the sample was cen-
trifuged at 800 g for 20 min at room temperature.43 The cell band
of WBCs was collected and harvested into a centrifuge tube and
diluted with 0.9% NaCl solution for further measurement. For sin-
gle platelets and agonist-induced platelet aggregates, 5 ml of blood
was drawn from a healthy donor with citric acid as the antico-
agulant. 500 μl of the blood was transferred into a 2-ml Eppen-
dorf tube and incubated with 50 μl of PBS for the sample con-
taining single platelets or with 50 μl of agonist solution contained
14-μM U46619 (Cayman Chemical, 16450) for 10 min for the sam-
ple containing platelet aggregates. The sample was diluted using
5 ml of 0.9% NaCl solution and layered above 3 ml of Lympho-
prep, followed by the centrifugation at 800 g for 20 min. Then,
1 ml of the sample was taken around the cell band of WBCs
to which 1 ml of 2% paraformaldehyde (Wako) was added for
fixation.

III. RESULTS
A. Demonstration of virtual OTS-QPI

To demonstrate the capability of the GAN in generating vir-
tual phase images, we compared them with the real phase images.
The bright-field, real phase, and virtual phase images of leukemia
cells, WBCs, single platelets, and platelet aggregates are shown in
Figs. 3(a) and 3(b). Specifically, the bright-field and real phase
images were obtained by the frequency-shifted OTS-QPI system
at a throughput of 15 000 cells/s. We trained two GAN models
for the generation of virtual phase images. The first GAN model
was trained on a training dataset containing the bright-field and
phase images of 3908 WBCs, 5000 HL-60 cells, 5000 Jurkat cells,
and 5000 K562 cells. The second model was trained on another
training dataset that contained the images of 4000 WBCs and 4000
platelets or platelet aggregates. The training process took approx-
imately 12 h for 120 epochs. The trained GAN models were then

used to generate virtual phase images from the bright-field images
in test datasets that were independent of the training datasets. For
the first model, 2000 phase images of each cell type were gener-
ated from their corresponding bright-field images, while the virtual
phase images of 3500 WBCs and 3509 platelets or platelet aggre-
gates were generated by the second model. It took about 10 min
to generate 10 000 virtual phase images. It can be directly observed
that the generated virtual phase images resemble the correspond-
ing real phase images in terms of shape and size, regardless of the
cell type. The biases in the bright-field images, such as the varia-
tions in brightness induced by nonuniform illumination and defo-
cusing, were also eliminated in the virtual phase images. The GAN
also generated virtual phase images that have minor discrepancies
from the real phase images for platelet aggregates with distinct mor-
phology from WBCs, indicating that the GAN was not simply fol-
lowing the same pattern for all types of cells. It is important to
note that the characteristic lobed cell nucleus of a polymorphonu-
clear cell (i.e., a subtype of WBCs) was also generated in the vir-
tual phase image even if the cell nucleus was nearly invisible in the
bright-field image. This is presumably because the GAN model rec-
ognized certain patterns in the bright-field images that represented
the cell nuclear regions, although they were indiscernible to human
eyes. However, additional noise can be observed in the virtual phase
images, especially for single platelets, which indicates that the gener-
ated images are not perfectly identical to the real images. Therefore,
the influence of these differences on the application of virtual phase
images needs to be further evaluated to demonstrate their practical
applicability.

B. Evaluation of virtual phase images
To quantitatively evaluate the quality of the generated virtual

phase images, we calculated the SSIM between pairs of real and
virtual phase images of three types of leukemia cells, WBCs, and
U46619-induced platelet aggregates. Specifically, we evaluated 2000
pairs of images for each type of cells. The SSIM scores were plotted
as histograms shown in Figs. 4(a)–4(e). The mean values and stan-
dard deviations of all the histograms are summarized in Fig. 4(f).
The average SSIM scores for HL-60 cells, Jurkat cells, K562 cells,
WBCs, and platelet aggregates were found to be 0.808, 0.846, 0.872,
0.791, and 0.710, respectively. We also segmented the cell region
from the background of both real and virtual phase images and cal-
culated their average SSIM scores and standard deviations, as shown
in Figs. 4(g) and 4(h). The average SSIM scores of the cell region
of the images of HL-60 cells, Jurkat cells, K562 cells, WBCs, and
platelet aggregates were found to be 0.961, 0.971, 0.914, 0.916, and
0.690, respectively, while those of the background region were found
to be 0.759, 0.776, 0.945, 0.739, and 0.650, respectively. The SSIM
scores agree with the subjective observation that most of the virtual
phase images and their corresponding real phase images are visu-
ally similar. Additionally, the relatively small standard deviations
indicate the uniform quality of the generated images, demonstrat-
ing the robustness of the GAN. Nevertheless, among the five cell
types, the images of platelet aggregates were ranked with the low-
est SSIM scores. One possible reason is that, in these images, similar
patterns in both the cell region and background were captured by
the GAN and thus transformed into high phase-shift areas in an
identical way. Another reason for the discrepancy may be that the
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FIG. 3. Comparison of real and virtual phase images. (a) Representative bright-field, real phase, and virtual phase images of a HL-60 cell, Jurkat cell, K562 cell, WBC, single
platelet, and platelet aggregate. The arrow indicates the flow direction. The phase images were normalized between 0 and 1. (b) Library of real and virtual phase images of
these cells.
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FIG. 4. Evaluation of the virtual phase images. Histogram of (a) HL-60 cells, (b) Jurkat cells, (c) K562 cells, (d) WBCs, and (e) single platelets and platelet aggregates in
SSIM score. (f) Mean and standard deviation values of SSIM scores in (a)–(e). (g) Mean and standard deviation values of SSIM scores of the segmented cell regions. (h)
Mean and standard deviation values of SSIM scores of the background parts.

signal-to-noise ratios are relatively low in both the bright-field
images and phase images of single platelets due to their small
size (i.e., 2–5 μm in diameter). In such cases, it is hard for
the GAN to extract sufficient information to correlate bright-
field images and real phase images, which leads to the relatively
low quality of the transformation. The evaluation results indi-
cate that our GAN models have good performance on pixel-to-
pixel transformation from the bright-field images to the phase
images. Moreover, from the comparison between images of the
cell region and background, we think that the relatively low
SSIM scores of whole images are attributed to the random noise
in the background instead of dissimilarities in the cell region.
Therefore, these generated virtual phase images are expected to
have equally significant use to real phase images in biomedical
applications.

C. Application of virtual OTS-QPI to the classification
of leukemia cells

To demonstrate the practical utility of the virtual OTS-QPI
method, we classified WBCs and three types of leukemia cells using
their bright-field and virtual phase images. We first compared two
AE models in classification accuracy: one trained with only the
bright-field images and the other trained with both bright-field and
phase images from the same training dataset that was used to train
the first GAN model. Note that for both models, while 90% of the
images (randomly picked) were used for training, the other 10%
of the images were used as the test dataset to plot the confusion
matrices and the t-SNE plots, as shown in Figs. 5(a)–5(d), respec-
tively. The training took around 40 min for 100 epochs for each
model. Both models achieved an average classification accuracy of
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FIG. 5. Demonstration of virtual OTS-QPI in cell classification. (a) Confusion matrix of the AE classification model trained with the bright-field images of three types of leukemia
cells and WBCs. (b) t-SNE plot of the model in (a). (c) Confusion matrix of the model trained with both bright-field and real phase images of three types of leukemia cells
and WBCs. (d) t-SNE plot of the model in (c). (e) Prediction results given by the model in (a) on a dataset containing only the bright-field images. (f) Prediction results given
by the model in (c) on a dataset containing combined bright-field and real phase images. (g) Prediction results given by the model in (c) on a dataset containing combined
bright-field and virtual phase images.

over 96%. We further tested the two models using a mixed dataset,
which contained the images of the three types of leukemia cells and
WBCs (2000 cells for each type). Note that the bright-field images
of these 8000 cells were used to generate the virtual phase images
by the GAN. For the AE model trained with only the bright-field
images, the test dataset contained only the bright-field images of
the 8000 cells. For the AE model trained with both bright-field
and phase images, we performed two classifications: one on the
test dataset containing the bright-field and real phase images of the

8000 cells and the other on the test dataset containing the bright-
field and virtual phase images of the 8000 cells. It took around 1
min to classify the images of 8000 cells. Although there is no obvi-
ous discrepancy in the classification accuracy of the two models,
the prediction results given by the model trained with the bright-
field images only [Fig. 5(e), 21.68%, 11.73%, 35.63%, and 30.96%,
respectively] are less accurate than those given by the model trained
with both the bright-field and real phase images [Fig. 5(f), 22.00%,
27.49%, 27.56%, and 22.95%, respectively], which indicates that the
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combination of bright-field images and phase images can dramat-
ically improve the reliability of the cell classification. Then, we
used virtual phase images to show enhanced prediction accuracy
by inputting the bright-field and virtual phase images of the same
dataset into the model trained by both bright-field and real phase
images. Meanwhile, the predicted ratios of the second AE model
on the combined bright-field and virtual phase images are shown in
Fig. 5(g) (24.75%, 21.94%, 27.70%, and 25.61%, respectively), which
achieved the same level of consistency with the ground truth as
the combination of the bright-field and real phase images. This is
partly attributed to the fact that the phase images provided intra-
cellular information, such as nuclear shape and refractive index,
that is essential to high-accuracy classification. In addition, the
phase images were not affected by the noise or biases as much as
the bright-field images, firmly demonstrating that the classification
is robust. Furthermore, the equivalently high classification accu-
racy values indicate that our virtual phase images are reliable, as
the essential cellular information was extracted from the bright-
field images and correctly transformed into the phase images by
the GAN.

IV. DISCUSSION
In this work, we demonstrated a method to generate high-

quality virtual phase images that resembled the real phase images,
regardless of the cell type, from the corresponding bright-field
images using the trained GAN model. Both the real and virtual
phase images showed similar enhancement values in the AE-based
cell classification compared with the results using the model trained
with only the bright-field images. From the technical perspective,
we achieved virtual QPI of cells based on OTS microscopy while
bypassing the need for the costly QPI module and eliminating the
drawbacks of phase image recovery. In terms of utility, by provid-
ing essential intracellular information such as the nuclear shape and
refractive index, the virtual OTS-QPI method significantly improved
the robustness of image-based cell classification and is thus highly
promising for rapid, reliable, and accurate cell detection and identi-
fication.

Although the advantages of the virtual OTS-QPI method
were experimentally demonstrated in this work, it can be further
improved as follows. First, in addition to phase imaging, differ-
ent imaging modules (e.g., fluorescence, Raman, and second har-
monic generation) can be installed to the optical setup to obtain
the ground truth for training the GAN to generate various types
of virtual images of cells. Second, since the GAN cannot gener-
ate images of cell types that are not included in the training pro-
cess, a larger image library containing images of numerous types of
cells can be obtained to train a more comprehensive GAN model.
Third, a more thorough investigation should be conducted on the
features extracted by the GAN and AE, which should provide
more clues about how cellular morphology and refractive indices
are related to the cell identity. Understanding such correlations is
expected to interpret the working mechanism of deep learning in cell
image classification, especially for those obtained with QPI.44 These
improvements are expected to dramatically increase the capabili-
ties of the GAN to generate different types of highly reliable virtual
images for high-accuracy cell classification, which will fuel further
applications.

In light of our results, the virtual OTS-QPI method provides
new possibilities for applications in a wide range of areas. For exam-
ple, virtual OTS-QPI requires fewer computational resources for
phase image recovery and thus holds great promise for real-time
image acquisition and analysis that are desirable for image-activated
cell sorting.45–47 In addition, since virtual OTS-QPI can be per-
formed with a simple optical setup, which is less prone to mechani-
cal vibrations and misalignment than conventional OTS-QPI, it can
be employed to build compact, portable devices for cell detection
and analysis for such applications as field studies and point-of-care
clinical tests. Furthermore, similar to other deep-learning-based or
-assisted imaging techniques,48 the optimized GAN can be general-
ized and transferred to other bright-field imaging systems, such as
conventional bright-field microscopes, to bridge the gaps between
various imaging modalities and enable broader applications. In sum-
mary, the GAN-based virtual OTS-QPI method is a powerful tool
with great potential due to its unique traits and is thus expected to
lead to breakthroughs in diverse fields.
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