The aim of this paper is to compare energy consumptions, CO2 emissions, and operative costs of condensing boilers, electric vapour compression heat pumps and gas driven absorption heat pumps to provide space heating and domestic hot water. The analysis is performed for 140 m2 single-family houses in five different Italian cities whose envelope features depend on the location. For each location, two different envelope conditions are considered. The first one is a non-insulated building, while the second one is the same building, but an external thermal insulation is added on vertical walls and roof. To avoid internal renovation, radiators are maintained as emission system. Combined dynamic simulations are performed to appreciate building and system interactions. A 6 second time step is set to evaluate properly interactions and the DHW profile demand. In addition, the GHP dynamic model is a grey box model experimentally validated. The results show that electric vapour compression heat pumps reach the highest non-renewable primary energy savings (>32%) compared to condensing boilers, but their operative costs are higher due to the higher specific cost of electricity in Italy. Gas driven absorption heat pumps achieve a lower consumption reduction than electric heat pumps (>22%), but they have also the minimum operative cost among the three technologies.

Energy, environmental and economic analysis of electric vapour compression and gas driven absorption heat pumps for single-family houses

Villa, Giorgio;Scoccia, Rossano;Toppi, Tommaso;Aprile, Marcello
2021-01-01

Abstract

The aim of this paper is to compare energy consumptions, CO2 emissions, and operative costs of condensing boilers, electric vapour compression heat pumps and gas driven absorption heat pumps to provide space heating and domestic hot water. The analysis is performed for 140 m2 single-family houses in five different Italian cities whose envelope features depend on the location. For each location, two different envelope conditions are considered. The first one is a non-insulated building, while the second one is the same building, but an external thermal insulation is added on vertical walls and roof. To avoid internal renovation, radiators are maintained as emission system. Combined dynamic simulations are performed to appreciate building and system interactions. A 6 second time step is set to evaluate properly interactions and the DHW profile demand. In addition, the GHP dynamic model is a grey box model experimentally validated. The results show that electric vapour compression heat pumps reach the highest non-renewable primary energy savings (>32%) compared to condensing boilers, but their operative costs are higher due to the higher specific cost of electricity in Italy. Gas driven absorption heat pumps achieve a lower consumption reduction than electric heat pumps (>22%), but they have also the minimum operative cost among the three technologies.
2021
2021 76th Italian National Congress ATI (ATI 2021)
File in questo prodotto:
File Dimensione Formato  
e3sconf_ati2021_06001.pdf

accesso aperto

: Publisher’s version
Dimensione 672.33 kB
Formato Adobe PDF
672.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact