Recognizing Activities of Daily Living (ADL) or detecting falls in domestic environments require monitoring the movements and positions of a person. Several approaches use wearable devices or cameras, especially for fall detection, but they are considered intrusive by many users. To support such activities in an unobtrusive way, ambient-based solutions are available (e.g., based on PIRs, contact sensors, etc.). In this paper, we focus on the problem of sitting detection exploiting only unobtrusive sensors. In fact, sitting detection can be useful to understand the position of the user in many activities of the daily routines. While identifying sitting/lying on a sofa or bed is reasonably simple with pressure sensors, detecting whether a person is sitting on a chair is an open problem due to the natural chair position volatility. This paper proposes a reliable, not invasive and energetically sustainable system that can be used on chairs already present in the home. In particular, the proposed solution fuses the data of an accelerometer and a capacitive coupling sensor to understand if a person is sitting or not, discriminating the case of objects left on the chair. The results obtained in a real environment setting show an accuracy of 98.6% and a precision of 95%.

High-efficiency multi-sensor system for chair usage detection

Baserga A.;Grandi F.;Masciadri A.;Comai S.;Salice F.
2021-01-01

Abstract

Recognizing Activities of Daily Living (ADL) or detecting falls in domestic environments require monitoring the movements and positions of a person. Several approaches use wearable devices or cameras, especially for fall detection, but they are considered intrusive by many users. To support such activities in an unobtrusive way, ambient-based solutions are available (e.g., based on PIRs, contact sensors, etc.). In this paper, we focus on the problem of sitting detection exploiting only unobtrusive sensors. In fact, sitting detection can be useful to understand the position of the user in many activities of the daily routines. While identifying sitting/lying on a sofa or bed is reasonably simple with pressure sensors, detecting whether a person is sitting on a chair is an open problem due to the natural chair position volatility. This paper proposes a reliable, not invasive and energetically sustainable system that can be used on chairs already present in the home. In particular, the proposed solution fuses the data of an accelerometer and a capacitive coupling sensor to understand if a person is sitting or not, discriminating the case of objects left on the chair. The results obtained in a real environment setting show an accuracy of 98.6% and a precision of 95%.
2021
Accelerometer sensor
Activities of Daily Living
Ambient assisted living
Capacitive coupling sensor
Chair usage
Fall detection
File in questo prodotto:
File Dimensione Formato  
sensors-21-07580 (1).pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 8.93 MB
Formato Adobe PDF
8.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1207797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact