Transboundary river basins worldwide are commonly managed by unique, institutionally independent decision makers and characterized by multiple stakeholders with conflicting interests, including distribution, co-management, and use of water resources across sectors and among countries. This competition is expected to exacerbate in the future due to climate change induced water scarcity, increasing demand, and the development of infrastructure, which is often criticized for potentially jeopardizing downstream security by affecting water supply, irrigation, and energy production. The Nile River basin is an emblematic transboundary basin, encompassing 11 countries and home to one-third of the African population. The largest fraction of Nile River streamflow originates in Ethiopia and is conveyed into the system via the Blue Nile. However, the larger water users have historically been downstream, in particular Egypt, where the High Aswan Dam (HAD) constitutes the backbone of Egyptian electricity supply and enables the irrigation of vast agricultural districts. This geographic disparity between water origination and consumption provides both the potential for conflict and the rationale for cooperation. Currently, the ongoing construction of the soon-to-be largest dam in Africa, the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile, is highly debated given concerns rising from how it will affect water supply and power generation in downstream countries. However, GERD may represent a response to the frequent regional power shortages, foster economic development, and represents a unique opportunity for cooperation between riparian countries from which all parties can benefit. In this work we explore how varying levels of cooperation among the riparian countries, from individualistic behavior to full cooperation, might impact hydropower production and irrigated agriculture in the Nile River basin. We use an Evolutionary Multi-Objective Direct Policy Search approach to design optimal operation of a three-dimensional reservoir system, including GERD (Ethiopia), HAD (Egypt), and Merowe Dam (Sudan), under historical hydro-climatic conditions and under different cooperation levels, assuming the capacity of re-optimization of the High Aswan Dam and the Merowe Dam. Expected results may illustrate the benefits of implementing a centralized rather than an individualistic strategy, highlighting the value of full information exchange and of basin-wide cooperation.
From individualistic behavior to full cooperation: optimal management policy design under varying cooperation levels in the Nile River basin
Trombetta, Giacomo;Castelletti, Andrea;Giuliani, Matteo;Zaniolo, Marta;
2020-01-01
Abstract
Transboundary river basins worldwide are commonly managed by unique, institutionally independent decision makers and characterized by multiple stakeholders with conflicting interests, including distribution, co-management, and use of water resources across sectors and among countries. This competition is expected to exacerbate in the future due to climate change induced water scarcity, increasing demand, and the development of infrastructure, which is often criticized for potentially jeopardizing downstream security by affecting water supply, irrigation, and energy production. The Nile River basin is an emblematic transboundary basin, encompassing 11 countries and home to one-third of the African population. The largest fraction of Nile River streamflow originates in Ethiopia and is conveyed into the system via the Blue Nile. However, the larger water users have historically been downstream, in particular Egypt, where the High Aswan Dam (HAD) constitutes the backbone of Egyptian electricity supply and enables the irrigation of vast agricultural districts. This geographic disparity between water origination and consumption provides both the potential for conflict and the rationale for cooperation. Currently, the ongoing construction of the soon-to-be largest dam in Africa, the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile, is highly debated given concerns rising from how it will affect water supply and power generation in downstream countries. However, GERD may represent a response to the frequent regional power shortages, foster economic development, and represents a unique opportunity for cooperation between riparian countries from which all parties can benefit. In this work we explore how varying levels of cooperation among the riparian countries, from individualistic behavior to full cooperation, might impact hydropower production and irrigated agriculture in the Nile River basin. We use an Evolutionary Multi-Objective Direct Policy Search approach to design optimal operation of a three-dimensional reservoir system, including GERD (Ethiopia), HAD (Egypt), and Merowe Dam (Sudan), under historical hydro-climatic conditions and under different cooperation levels, assuming the capacity of re-optimization of the High Aswan Dam and the Merowe Dam. Expected results may illustrate the benefits of implementing a centralized rather than an individualistic strategy, highlighting the value of full information exchange and of basin-wide cooperation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.