We consider the classical ‘‘Serrin's symmetry result” for the overdetermined boundary value problem related to the equation Δu=−1 in a model manifold of non-negative Ricci curvature. Using an extension of the Weinberger classical argument we prove a Euclidean symmetry result under a suitable ‘‘compatibility” assumption between the solution and the geometry of the model.
A Serrin-type symmetry result on model manifolds: An extension of the Weinberger argument
Roncoroni A.
2018-01-01
Abstract
We consider the classical ‘‘Serrin's symmetry result” for the overdetermined boundary value problem related to the equation Δu=−1 in a model manifold of non-negative Ricci curvature. Using an extension of the Weinberger classical argument we prove a Euclidean symmetry result under a suitable ‘‘compatibility” assumption between the solution and the geometry of the model.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Articolo_CRASS.pdf
Accesso riservato
:
Publisher’s version
Dimensione
273.93 kB
Formato
Adobe PDF
|
273.93 kB | Adobe PDF | Visualizza/Apri |
11311-1205140_Roncoroni.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
144.16 kB
Formato
Adobe PDF
|
144.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.