We consider the classical ‘‘Serrin's symmetry result” for the overdetermined boundary value problem related to the equation Δu=−1 in a model manifold of non-negative Ricci curvature. Using an extension of the Weinberger classical argument we prove a Euclidean symmetry result under a suitable ‘‘compatibility” assumption between the solution and the geometry of the model.

A Serrin-type symmetry result on model manifolds: An extension of the Weinberger argument

Roncoroni A.
2018-01-01

Abstract

We consider the classical ‘‘Serrin's symmetry result” for the overdetermined boundary value problem related to the equation Δu=−1 in a model manifold of non-negative Ricci curvature. Using an extension of the Weinberger classical argument we prove a Euclidean symmetry result under a suitable ‘‘compatibility” assumption between the solution and the geometry of the model.
2018
File in questo prodotto:
File Dimensione Formato  
Articolo_CRASS.pdf

Accesso riservato

: Publisher’s version
Dimensione 273.93 kB
Formato Adobe PDF
273.93 kB Adobe PDF   Visualizza/Apri
11311-1205140_Roncoroni.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 144.16 kB
Formato Adobe PDF
144.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1205140
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact