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A SERRIN-TYPE SYMMETRY RESULT ON MODEL MANIFOLDS: AN

EXTENSION OF THE WEINBERGER ARGUMENT

ALBERTO RONCORONI

Abstract. We consider the classical “Serrin’s symmetry result” for the overdetermined bound-
ary value problem related to the equation ∆u = −1 in a model manifold of non-negative Ricci
curvature. Using an extension of the Weinberger classical argument we prove a Euclidean
symmetry result under a suitable “compatibility” assumption between the solution and the
geometry of the model.

1. Preliminaries and statement of the result

A classical result obtained by Serrin in [16] is the following:

Theorem 1. Let Ω be a bounded domain in the Euclidean space R
m whose boundary is of class

C2. Suppose that Ω supports a solution u ∈ C2(Ω) ∩ C1(Ω̄) of the overdetermined problem










∆u = −1 in Ω,

u = 0 on ∂Ω,

∂νu = constant on ∂Ω,

(1)

where ν denotes the exterior unit normal to ∂Ω. Then Ω is a ball and u has this specific form

u(r) =
1

2m
(b2 − r2), (2)

where b is the radius of the ball and r denotes distance from its center.

This result is known as the “Serrin’s symmetry result” or the “Serrin’s rigidity result”. The
technique used by Serrin to prove this result is a refinement of the famous reflection principle due
to Alexandrov in [2] and is the so-called “moving planes method” together with the Maximum
Principle and a new version of the Hopf’s boundary point Lemma. In particular Alexandrov
introduced this method to prove that a closed (i.e. compact without boundary) hypersurface
embedded in the Euclidean space Rm with constant mean curvature must be a sphere. Moreover
in [11], Kumaresan and Prajapat used the same method of the moving planes to prove the
analogous of the “Serrin’s symmetry result” in the case of bounded domains of the hyperbolic
space H

m and of the hemisphere S
m
+ .

We mention that the technique of Serrin inspired the study of various properties and symmetry
results for positive solutions of elliptic partial differential equations in bounded and unbounded
domains of the Euclidean space (see the seminal paper by Gidas, Ni and Nirenberg [10]).
In this article we focus on the more analytic approach by Weinberger [18] which is based on the
Maximum Principle, the integration by parts, the Cauchy-Schwarz inequality and the Bochner
formula. We try to extend his proof to the so-called model manifolds with non-negative Ricci
curvature.
We mention that the approach of Weinberger inspired several works in the context of elliptic
partial differential equations (see e.g. [3, 5, 6, 7, 8, 9, 12, 13, 17] and their references).
In general, as we will see, the importance and the convenience of the model manifolds lies in the
fact that their geometry and some natural differential operators (such as the Laplacian) have a
particularly simple and explicit description.

Date: November 14, 2018.
2010 Mathematics Subject Classification. 35R01, 35N25 (primary); 58J05 (secondary).
Key words and phrases. Overdetermined PDE, Symmetry, Model Manifolds.

1

http://arxiv.org/abs/1708.02032v2


2 ALBERTO RONCORONI

First of all we recall the definition of the m-dimensional model manifold

Definition 2. A Riemannian manifold (Mm
σ , gMm

σ

) is called a model manifold if:

M
m
σ :=

[0, R) × S
m−1

∼
and gMm

σ

:= dr ⊗ dr + σ2(r)gSm−1 ;

where R ∈ (0,+∞], ∼ is the relation that identifies all the points of {0}×S
m−1 and σ : [0, R) →

[0,+∞) is a smooth function such that:

• σ(r) > 0, for all r > 0;

• σ(2k)(0) = 0, for all k = 0, 1, 2, . . . ;
• σ′(0) = 1.

Moreover the unique point corresponding to r = 0 is called the pole of the model and denoted by

o ∈ M
m
σ and σ is called the warping function.

Important examples of model manifolds are the so called space-forms: R
m, H

m and S
m.

Explicitly

• The Euclidean space R
m is isometric to the model manifold M

m
σ with σ(r) = r :

[0,+∞) → [0,+∞).
• The iperbolic space H

m is isometric to the model manifold M
m
σ with σ(r) = sinh(r) :

[0,+∞) → [0,+∞).
• The standard sphere S

m \ {N} is isometric to the model manifold M
m
σ with σ(r) =

sin(r) : [0, π) → [0,+∞).

We also recall that in M
m
σ the Ricci curvature has the following explicit expression. Given

x ∈ M
m
σ and X ∈ ∇r(x)⊥ in TxM

m
σ a unit vector we have

RicMm

σ

(X,X) = (m− 2)
1− (σ′)2

σ2
−

σ′′

σ
,

and

RicMm

σ

(∇r,∇r) = −(m− 1)
σ′′

σ
.

With these preliminaries, the main Theorem of this article is the following

Theorem 3. Let Ω ⊂ M
m
σ be a smooth domain with o ∈ Ω. Assume that Ω ⋐ BR̃(o) where the

ray R̃ > 0 is such that the following conditions on σ are satisfied on the interval [0, R̃):

(a) RicMm

σ

≥ 0, i.e. σ′′ ≤ 0 and (m− 2)
(

1− (σ′)2
)

− σ σ′′ ≥ 0;
(b) σ′ > 0.

If Ω supports a solution u of (1) and u satisfies the following “compatibility” condition
∫

Ω

(σ′′σm−1)′

σm−1
u2 ≥ 0 (3)

then we have that Ω is a Euclidean ball of radius ρ centred in the pole o of the model and u has

the specific form:

u(r) =
1

2m
(ρ2 − r2) (4)

where r(x) = dist(x, o).

Remark 4. We analyse the hypothesis of the Theorem.

• Condition (b) appears in other articles on the subject, see for instance [4] by Ciraolo
and Vezzoni.

• The “compatibility” condition (3) describes a property of the solution in relation to the
geometry of the model. It is automatically satisfied by any solution of (1) in the case of
the Euclidean space and it can not be reduced to a simple condition on the model, like

(σ′′σm−1)′ ≥ 0.

Indeed, in this case, the three conditions are compatible only with the flat case: consider
f(r) := σ′′(r)σm−1(r). Then f(0) = 0 and if f ′(r) ≥ 0, i.e. f(r) is non-decreasing, so
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f(r) ≥ 0 for r > 0. But σ′′(r) ≤ 0 according to (a), so we have that σ′′(r) = 0. In this
case the result is well known and is presented in Weinberger’s article.

• Moreover in [1] Alessandrini and Magnanini consider a symmetry result for a overde-
termined problem and they assume a “compatibility” condition as an integral on the
boundary of the domain involving the solution and its gradient.

Remark 5. Observe that, by the Strong Maximum Principle, a solution u of (1) is positive in
Ω. Moreover since ∂νu = constant 6= 0 on Ω we obtain that |∇u| 6= 0 on ∂Ω and the smooth
hypersurface ∂Ω = {u = 0} has exterior normal given by

ν = −
∇u

|∇u|
|∂Ω .

This implies that

∂νu = − |∇u| on ∂Ω.

2. Explicit computations towards the proof of Theorem 3

The Laplace-Beltrami operator ∆ of Mm
σ acts on C2-functions u : Mm

σ → R as follows:

∆u = ∂2
ru+ (m− 1)

σ′

σ
∂ru+

1

σ2
∆̄u (5)

=
∂r(σ

m−1∂ru)

σm−1
+

1

σ2
∆̄u.

where ∆̄ denotes the Laplacian on the standard sphere (Sm−1, gSm−1). Using this expression we
obtain:

Lemma 6. The following general formula holds:

∆(σ ∂ru) = σ ∂r∆u+ 2σ′ ∆u+ (2−m)σ′′ ∂ru. (6)

Remark 7. In particular, if σ(r) = r and, hence, Mm
σ = R

m, we obtain

∆(r ∂ru) = r ∂r∆u+ 2∆u, (7)

which is the traditional formula used by Weinberger to prove Serrin result.

Proof. We compute

σ∂r(∆u) =σ

{

∂3
ru+ (m− 1)

σ′′σ − (σ′)2

σ2
∂ru+ (m− 1)

σ′

σ
∂2
ru− 2

σ′

σ3
∆̄u+

1

σ2
∂r(∆̄u)

}

=σ∂3
ru+ (m− 2)σ′′∂ru+ σ′′∂ru− 2(m− 1)

(σ′)2

σ
∂ru+ (m− 1)

(σ′)2

σ
∂ru+

+ (m+ 1)σ′∂2
ru− 2σ′∂2

ru− 2
σ′

σ2
∆̄u+

1

σ
∂r(∆̄u) +

1

σ2
∆̄(σ∂ru)−

1

σ2
∆̄(σ∂ru)

=∆(σ∂ru) + (m− 2)σ′′∂ru− 2σ′∆u+
1

σ
∂r(∆̄u)−

1

σ2
∆̄(σ∂ru),

i.e.

∆(σ∂ru) = σ∂r(∆u) + (2−m)σ′′∂ru+ 2σ′∆u.

�

Now we focus on the solution u of (1) (from now on we put the constant in (1) equal to c)
and we show the following

Lemma 8. Let Ω and u satisfy (1). Then:

(m+ 2)

∫

Ω
uσ′ = mc2

∫

Ω
σ′ +

(m− 2)

2

∫

Ω

(σ′′σm−1)′

σm−1
u2. (8)
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Remark 9. In particular, if σ(r) = r and, hence, Mm
σ = R

m, we obtain

(m+ 2)

∫

Ω
u = mc2|Ω|, (9)

as in the original Weinberger argument; where |Ω| is the volume of the domain Ω.

Proof. First of all we observe that, in this setting, formula (6) becomes

∆(σ ∂ru) = −2σ′ + (2−m)σ′′ ∂ru.

So by Green’s Theorem
∫

Ω
−2σ′ u+ (2−m)σ′′ ∂ruu+ σ ∂ru =

∫

Ω
∆(σ ∂ru)u− σ ∂ru∆u

=

∫

∂Ω
∂ν(σ ∂ru)u− σ ∂ru∂νu

=−

∫

∂Ω
σ (∂νu)

2∂νr

=− c2
∫

∂Ω
σ ∂νr

=− c2
∫

Ω
σ∆r + gMm

σ

(∇r,∇σ)

=− c2
∫

Ω
σ (m− 1)

σ′

σ
+ σ′

=− c2m

∫

Ω
σ′,

where we have used the fact that u = 0 on ∂Ω and that ∂νu = c on ∂Ω.
Now note that

∫

Ω
σ∂ru =

∫

Ω
gMm

σ

(∇u,∇(

∫ r

0
σ(s)ds))

= −

∫

Ω
u∆(

∫ r

0
σ(s)ds)

= −m

∫

Ω
uσ′.

Using this and the previous computation we have

(m+ 2)

∫

Ω
uσ′ = mc2

∫

Ω
σ′ + (2−m)

∫

Ω
σ′′ u∂ru. (10)

Finally we observe that
∫

Ω
σ′′ u∂ru =

∫

Ω
gMm

σ

(∇σ′,∇(
1

2
u2)) (11)

= −
1

2

∫

Ω
∆σ′ u2

= −
1

2

∫

Ω

(σ′′σm−1)′

σm−1
u2,

where the second and the third equations are obtained using the condition u = 0 on ∂Ω and
the expression (5), respectively.

�
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3. Proof of Theorem 3

Now we are ready to prove the main result of this paper.

Proof of Theorem 3. Let u and Ω as in the statement of Theorem 3; by the Bochner formula
and the Cauchy-Schwarz inequality we get

∆
(

m|∇u|2 + 2u
)

= 2m|Hess(u)|2 + 2mRicMm

σ

(∇u,∇u) + 2∆u (12)

≥ 2(m|Hess(u)|2 +∆u)

= 2
(

m|Hess(u)|2 − (∆u)2
)

≥ 0 on Ω,

and the equality holds if and only if

Hess(u) =
∆u

m
gMm

σ

and
RicMm

σ

(∇u,∇u) = 0.

Since, according to Remark 5,
(

m|∇u|2 + 2u
)

= mc2 on ∂Ω, (13)

we conclude from the Strong Maximum Principle that either
(

m|∇u|2 + 2u
)

< mc2 on Ω (14)

or
(

m|∇u|2 + 2u
)

≡ mc2 on Ω. (15)

By contradiction assume that condition (14) is satisfied. According to (b) we can multiply both
the members of (14) by σ′ and integrate in order to obtain

m

∫

Ω
|∇u|2σ′ + 2

∫

Ω
uσ′ < mc2

∫

Ω
σ′. (16)

Now we use the identity (8) to deal with the second term i.e.

2

∫

Ω
uσ′ = mc2

∫

Ω
σ′ +

(m− 2)

2

∫

Ω

(σ′′σm−1)′

σm−1
u2 −m

∫

Ω
uσ′. (17)

Note that, by the divergence theorem,

m

∫

Ω
σ′div(u∇u) = −m

∫

Ω
σ′′u∂ru. (18)

Moreover,

m

∫

Ω
σ′div(u∇u) = m

∫

Ω
σ′|∇u|2 −m

∫

Ω
σ′u.

So

m

∫

Ω
σ′|∇u|2 = m

∫

Ω
σ′u−m

∫

Ω
σ′′u∂ru. (19)

Substituting (17) and (19) in (16) we obtain

−m

∫

Ω
σ′′u∂ru+m

∫

Ω
σ′u+mc2

∫

Ω
σ′ +

(m− 2)

2

∫

Ω

(σ′′σm−1)′

σm−1
u2 −m

∫

Ω
uσ′ < mc2

∫

Ω
σ′.

Lastly, we use the identity (11) to deduce

m

2

∫

Ω

(σ′′σm−1)′

σm−1
u2 +

(m− 2)

2

∫

Ω

(σ′′σm−1)′

σm−1
u2 < 0,

i.e.

− (m− 1)

∫

Ω

(σ′′σm−1)′

σm−1
u2 > 0; (20)

and this contradicts the “compatibility” condition (3).
Therefore (15) holds true and m|∇u|2 + 2u must be constant in Ω. Since its Laplacian then
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vanishes, we conclude from (12) that equality must hold in Cauchy-Schwarz inequality, i.e. we
have proved that u is a solution of (recall that ∆u = −1 in Ω)

Hess(u) = −
1

m
gMm

σ

in Ω. (21)

Now, let ρ := dist(o, ∂Ω) and take Bρ(o) ⊂ Ω. Since ∂Ω is compact, there exists p ∈ ∂Ω such
that p ∈ ∂Ω ∩ ∂Bρ(o). In particular, since u = 0 on ∂Ω, we have that

u(p) = 0.

If we prove that u is a radial function in Bρ(o) then

u = 0 on ∂Bρ(o).

On the other hand, by the Strong Maximum Principle,

u > 0 in Ω.

Therefore we can conclude that ∂Bρ(o) ∩ Ω = ∅ and, hence, Ω = Bρ(o).
So the keypoint is to prove that u : Bρ(o) → R, solution of (21), is a radial function in Bρ(o).
To this end, take x ∈ Bρ(o). Since M

m
σ is geodesically complete there exist a minimizing and

normalized geodesic γ ⊂ Bρ(o) from o to x. Let y(t) := u◦γ(t) and note that, along γ, equation
(21) implies

y′′(t) =
d2

dt2
(u ◦ γ)(t)

=
d

dt
gMm

σ

(∇u(γ(t)), γ̇(t))

= gMm

σ

(Dγ̇∇u(γ(t)), γ̇(t)) + gMm

σ

(∇u(γ(t)),Dγ̇ γ̇(t))

= gMm

σ

((Dγ̇(t)∇u)(γ(t)), γ̇(t))

= Hess(u) |γ(t) (γ̇(t), γ̇(t))

= −
1

m
.

The solutions of y′′(t) = −
1

m
are given by

y(t) = −
1

2m
t2 + αt+ β

where α, β ∈ R. Now taking t = r(x) we get

u(x) = u ◦ γ(r(x)) = y(r(x)) = −
1

2m
r(x)2 + αr(x) + β (22)

which is radial. To determine the two constant in (22) we recall that u satisfies the following
{

u(ρ) = 0

u(r) > 0 for 0 < r < ρ

i.e., using the explicit formula of u we obtain


















−
1

2m
ρ2 + αρ+ β = 0

−
1

2m

(ρ

2

)2
+ α

ρ

2
+ β > 0 for r =

ρ

2

substituting the expression β =
1

2m
ρ2 − αρ in the second equation we get

α <
3

4m
ρ.
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But, since u must be a C2-function we have that α = 0; indeed, if we consider the Euclidean
case where r(x) = d(x, 0) = |x| the gradient of u becomes

∇u(x) = −
1

m
x+ α

x

|x|
(23)

which is not a C1 function in the origin (i.e. the pole of the Euclidean space) unless α = 0. In
a generic model the expression (23) holds in a system of normal coordinates in the pole. So the

same conclusion holds and β =
1

2m
ρ2; with this constants the function u becomes

u(r) = −
1

2m
r2 +

1

2m
ρ2

which is exactly the expression (4); observe that, since u is radial, ∂νu = u′(r) and the condition
∂νu = constant in ∂Ω = ∂Bρ(o) is automatically satisfied.
Moreover we recall that if f : Mm

σ → R is a smooth radial function, then its Hessian takes the
following expression

Hess(f) = f ′′dr ⊗ dr + f ′σσ′gSm−1 . (24)

Using this expression with the function u we get

Hess(u) = −
1

m
dr ⊗ dr −

1

m
rσσ′gSm−1 , (25)

and using this latter in (21) we obtain

−
1

m
dr ⊗ dr −

1

m
rσσ′gSm−1 = −

1

m
(dr ⊗ dr + σ2gSm−1)

i.e.

−
1

m
rσσ′gSm−1 = −

1

m
σ2gSm−1 .

It follows that σ(r) = r, so in the ball Bρ(o) not only the solution of (21) is radial but also the
metric gMm

σ

is the Euclidean metric. This implies that the ball Bρ(o) is a Euclidean ball and
the claim follows.

�

Remark 10 (An alternative end of the proof). From the equality sign in the Bochner inequality
(12) we get

RicMm

σ

(∇u,∇u) = 0. (26)

From the explicit expression of u (formula (4)) we see that the only critical point is in r = 0,
i.e. in the pole o of the model. So the condition on the Ricci curvature becomes

RicMm

σ

(∇r,∇r) = 0 in Bρ(o) \ {o}. (27)

From the explicit expression of RicMm

σ

(∇r,∇r) we get σ′′ = 0 in (0, ρ) and we conclude that
σ(r) = r, i.e. Bρ(o) is an Euclidean ball.

Remark 11. In [15] by Ros we can find a similar spirit where, using the Reilly’s formula,
he obtained a generalization of Alexandrov theorem for compact hypersurfaces with constant
higher order mean curvatures; in this article equation (21) is used to prove a Euclidean symmetry
result on a generic compact Riemannian manifold of non-negative Ricci curvature with smooth
boundary with mean curvature positive everywhere.

Remark 12. In this remark we provide an example that shows that if the “compatibility”
condition (3) is not satisfied then we can not have Euclidean symmetry. According to the result
of Kumaresan and Prajapat [11] we know that if we take a domain Ω ⊂ S

m such that Ω̄ ⊂ S
m
+

and there exist a solution u to the Serrin’s symmetry problem (1) then Ω must be a geodesic
ball and u must be radially symmetric. We know that the hemisphere is isometric to the model
M

m
σ with σ(r) = sin(r) |[0,π/2]; so in this example conditions (a) and (b) of Theorem 3 are clearly

satisfied and the “compatibility” condition (3) becomes:
∫

Ω

(σ′′σm−1)′

σm−1
u2 =

∫

Ω
−m cos(r)u2(r),
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which is negative due to the monotonicity of the integral and to the fact that the function
r 7→ cos(r)u2(r) is positive in Ω.
In conclusion the “compatibility” condition is not satisfied and the symmetry result is not
Euclidean since the ball Ω is a geodesic ball, i.e. the metric in this ball is the metric of the
sphere.
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[3] L. Caffarelli, N. Garofalo, and F. Segàla, A gradient bound for entire solutions of quasi-linear equations and
its consequences, Comm. Pure Appl. Math., 47 (1994), 1457-1473.

[4] G. Ciraolo, L. Vezzoni, A rigidity problem on the round sphere. Commun. Cont. Math. 19 (2016), 1750001.
[5] G. Ciraolo, L. Vezzoni, On Serrin’s overdetermined problem in space forms. Preprint (arXiv:1702.05277)
[6] A. Farina, B. Kawohl, Remarks on an overdetermined boundary value problem. Calc. Var. Partial Differential

Equations 31 (2008), 351-357.
[7] A. Farina, E. Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative

mean curvature. Adv. Math., 225 (2010), no. 5, 2808-2827.
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Via Ferrata 5, 27100 Pavia, Italy

E-mail address: alberto.roncoroni01@universitadipavia.it

http://arxiv.org/abs/1702.05277

	1. Preliminaries and statement of the result
	2. Explicit computations towards the proof of Theorem ??
	3. Proof of Theorem ??
	References

