Air-stable semiconducting inks suitable for complementary logic are key to create low-power printed integrated circuits (ICs). High-performance printable electronic inks with 2D materials have the potential to enable the next generation of high performance low-cost printed digital electronics. Here, the authors demonstrate air-stable, low voltage (<5 V) operation of inkjet-printed n-type molybdenum disulfide (MoS2), and p-type indacenodithiophene-co-benzothiadiazole (IDT-BT) field-effect transistors (FETs), estimating an average switching time of τMoS2 ≈ 4.1 μs for the MoS2 FETs. They achieve this by engineering high-quality MoS2 and air-stable IDT-BT inks suitable for inkjet-printing complementary pairs of n-type MoS2 and p-type IDT-BT FETs. They then integrate MoS2 and IDT-BT FETs to realize inkjet-printed complementary logic inverters with a voltage gain |Av| ≈ 4 when in resistive load configuration and |Av| ≈ 1.4 in complementary configuration. These results represent a key enabling step towards ubiquitous long-term stable, low-cost printed digital ICs.
Inkjet Printed Circuits with 2D Semiconductor Inks for High-Performance Electronics
Anzi L.;Sordan R.;Torrisi F.
2021-01-01
Abstract
Air-stable semiconducting inks suitable for complementary logic are key to create low-power printed integrated circuits (ICs). High-performance printable electronic inks with 2D materials have the potential to enable the next generation of high performance low-cost printed digital electronics. Here, the authors demonstrate air-stable, low voltage (<5 V) operation of inkjet-printed n-type molybdenum disulfide (MoS2), and p-type indacenodithiophene-co-benzothiadiazole (IDT-BT) field-effect transistors (FETs), estimating an average switching time of τMoS2 ≈ 4.1 μs for the MoS2 FETs. They achieve this by engineering high-quality MoS2 and air-stable IDT-BT inks suitable for inkjet-printing complementary pairs of n-type MoS2 and p-type IDT-BT FETs. They then integrate MoS2 and IDT-BT FETs to realize inkjet-printed complementary logic inverters with a voltage gain |Av| ≈ 4 when in resistive load configuration and |Av| ≈ 1.4 in complementary configuration. These results represent a key enabling step towards ubiquitous long-term stable, low-cost printed digital ICs.File | Dimensione | Formato | |
---|---|---|---|
Adv Elect Materials - 2021 - Carey - Inkjet Printed Circuits with 2D Semiconductor Inks for High‐Performance Electronics.pdf
accesso aperto
Descrizione: Accepted manuscript
:
Publisher’s version
Dimensione
5.36 MB
Formato
Adobe PDF
|
5.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.