Optical circuit switching networks have been recognized as a promising solution for inter-datacenter networks. However, for intra-datacenter networks, they may fall short in efficiently provisioning traffic requests due to their relatively coarse-grained channel assignment and special intra-datacenter traffic patterns. Optical time slice switching (OTSS) has been recently proposed as an optical-switching technique that can provide flexible and transparent optical circuits by extending the merit of flex-grid switching to the time domain, thus achieving much finer granularity. As OTSS requires nanosecond speed optical switches which are expensive, it might not be economically viable to make a one-time upgrade for the entire datacenter. Thus, we expect fine-grained OTSS-enabled and coarse-grained flex-grid-enabled optical switching techniques to co-exist in the foreseeable future. In this study, we investigate an OTSS-enabled flex-grid (OTSS-FG) architecture for intra-datacenter networks. For scenarios where traffic flows are given, we develop a Mixed Integer Linear Program to study the optimal bandwidth allocation scheme in an OTSS-FG architecture. When traffic flows are generated in real time, by leveraging machine-learning techniques to detect flow types, we propose a flow-aware bandwidth allocation (FABA) scheme and a dynamic version of FABA, called “D-FABA” scheme. Numerical simulations show that proposed bandwidth allocation scheme can outperform benchmark schemes in terms of average delay and blocking probability.

A novel bandwidth allocation scheme for OTSS-enabled flex-grid intra-datacenter networks

Tornatore, Massimo;
2021-01-01

Abstract

Optical circuit switching networks have been recognized as a promising solution for inter-datacenter networks. However, for intra-datacenter networks, they may fall short in efficiently provisioning traffic requests due to their relatively coarse-grained channel assignment and special intra-datacenter traffic patterns. Optical time slice switching (OTSS) has been recently proposed as an optical-switching technique that can provide flexible and transparent optical circuits by extending the merit of flex-grid switching to the time domain, thus achieving much finer granularity. As OTSS requires nanosecond speed optical switches which are expensive, it might not be economically viable to make a one-time upgrade for the entire datacenter. Thus, we expect fine-grained OTSS-enabled and coarse-grained flex-grid-enabled optical switching techniques to co-exist in the foreseeable future. In this study, we investigate an OTSS-enabled flex-grid (OTSS-FG) architecture for intra-datacenter networks. For scenarios where traffic flows are given, we develop a Mixed Integer Linear Program to study the optimal bandwidth allocation scheme in an OTSS-FG architecture. When traffic flows are generated in real time, by leveraging machine-learning techniques to detect flow types, we propose a flow-aware bandwidth allocation (FABA) scheme and a dynamic version of FABA, called “D-FABA” scheme. Numerical simulations show that proposed bandwidth allocation scheme can outperform benchmark schemes in terms of average delay and blocking probability.
2021
File in questo prodotto:
File Dimensione Formato  
WangL_PNET_21.pdf

Accesso riservato

Descrizione: WangL_PNEt_2021
: Publisher’s version
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1203297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact