Neuromorphic computing aims at the realization of intelligent systems able to process information similarly to our brain. Brain-inspired computing paradigms have been implemented in crossbar arrays of memristive devices; however, this approach does not emulate the topology and the emergent behaviour of biological neuronal circuits, where the principle of self-organization regulates both structure and function. Here, we report on in materia reservoir computing in a fully memristive architecture based on self-organized nanowire networks. Thanks to the functional synaptic connectivity with nonlinear dynamics and fading memory properties, the designless nanowire complex network acts as a network-wide physical reservoir able to map spatio-temporal inputs into a feature space that can be analysed by a memristive resistive switching memory read-out layer. Computing capabilities, including recognition of spatio-temporal patterns and time-series prediction, show that the emergent memristive behaviour of nanowire networks allows in materia implementation of brain-inspired computing paradigms characterized by a reduced training cost.
In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks
Pedretti G.;Ricci S.;Hashemkhani S.;Ielmini D.;
2021-01-01
Abstract
Neuromorphic computing aims at the realization of intelligent systems able to process information similarly to our brain. Brain-inspired computing paradigms have been implemented in crossbar arrays of memristive devices; however, this approach does not emulate the topology and the emergent behaviour of biological neuronal circuits, where the principle of self-organization regulates both structure and function. Here, we report on in materia reservoir computing in a fully memristive architecture based on self-organized nanowire networks. Thanks to the functional synaptic connectivity with nonlinear dynamics and fading memory properties, the designless nanowire complex network acts as a network-wide physical reservoir able to map spatio-temporal inputs into a feature space that can be analysed by a memristive resistive switching memory read-out layer. Computing capabilities, including recognition of spatio-temporal patterns and time-series prediction, show that the emergent memristive behaviour of nanowire networks allows in materia implementation of brain-inspired computing paradigms characterized by a reduced training cost.File | Dimensione | Formato | |
---|---|---|---|
Manuscript_revised_rev_2_v2.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
4.82 MB
Formato
Adobe PDF
|
4.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.