The Real-Time Monitoring and Performance Management suite tool, known as UIL (User Interface Layer), was developed in the FASTEN project, a R&D initiative financed by the innovation and research program H2020 within a bilateral Europe-Brazil call. UIL was conceived and deployed in the IIoT architecture of the project. The goal was to provide a user-centered assistance to the human operator for both decision-responsibility and control loop, in a continuously updating information fashion, related to system's state. In order to have experimental results, a qualitative assessment was conducted in an industrial environment. The architecture proposed was based on the adoption of a Knowledge Engineering User Interface to support Operator 4.0. Our empirical experiments point out to a successful set of results.

A predictive simulation and optimization architecture based on a knowledge engineering user interface to support operator 4.0

Palasciano Claudio.;Taisch Marco.
2021-01-01

Abstract

The Real-Time Monitoring and Performance Management suite tool, known as UIL (User Interface Layer), was developed in the FASTEN project, a R&D initiative financed by the innovation and research program H2020 within a bilateral Europe-Brazil call. UIL was conceived and deployed in the IIoT architecture of the project. The goal was to provide a user-centered assistance to the human operator for both decision-responsibility and control loop, in a continuously updating information fashion, related to system's state. In order to have experimental results, a qualitative assessment was conducted in an industrial environment. The architecture proposed was based on the adoption of a Knowledge Engineering User Interface to support Operator 4.0. Our empirical experiments point out to a successful set of results.
2021
IFAC-PapersOnLine
Human operator support
IIoT architectures
Industry 4.0
Intelligent manufacturing systems
Real-Time Monitoring
File in questo prodotto:
File Dimensione Formato  
2021 Palasciano A Predictive SImulation and Optimization Architecture.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 813.23 kB
Formato Adobe PDF
813.23 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1194009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact