The capability to predict the behaviour of machines is nowadays experiencing a tremendous growth of interest within Industry 4.0-based manufacturing systems. The route to this end is not straightforward when Run-To-Failure (RTF) data are poorly available or not available at all, thus a strategy must be properly defined. In this proposal, assuming no RTF data, a novelty detection is combined with random coefficient statistical modelling for Remaining Useful Life (RUL) prediction. This approach is formalized by means of a reference framework extending the ISO 13374–OSA-CBM standards. The framework guides the integration of novelty detection and RUL prediction finally implemented in the scope of a Flexible Manufacturing Line part of the Industry 4.0 Lab of the School of Management of Politecnico di Milano.

A framework to integrate novelty detection and remaining useful life prediction in Industry 4.0-based manufacturing systems

Cattaneo L.;Polenghi A.;Macchi M.
2021-01-01

Abstract

The capability to predict the behaviour of machines is nowadays experiencing a tremendous growth of interest within Industry 4.0-based manufacturing systems. The route to this end is not straightforward when Run-To-Failure (RTF) data are poorly available or not available at all, thus a strategy must be properly defined. In this proposal, assuming no RTF data, a novelty detection is combined with random coefficient statistical modelling for Remaining Useful Life (RUL) prediction. This approach is formalized by means of a reference framework extending the ISO 13374–OSA-CBM standards. The framework guides the integration of novelty detection and RUL prediction finally implemented in the scope of a Flexible Manufacturing Line part of the Industry 4.0 Lab of the School of Management of Politecnico di Milano.
2021
condition monitoring
Industry 4.0
predictability
prognostics
statistical modelling
File in questo prodotto:
File Dimensione Formato  
IRIS post print.pdf

Open Access dal 21/03/2022

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1193246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact