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A FRAMEWORK TO INTEGRATE NOVELTY DETECTION AND 

REMAINING USEFUL LIFE PREDICTION IN INDUSTRY 4.0-

BASED MANUFACTURING SYSTEMS 

 

The capability to predict the behaviour of machines is nowadays experiencing a 

tremendous growth of interest within Industry 4.0-based manufacturing systems. 

The route to this end is not straightforward when Run-To-Failure (RTF) data are 

poorly available or not available at all, thus a strategy must be properly defined. In 

this proposal, assuming no RTF data, a novelty detection is combined with random 

coefficient statistical modelling for Remaining Useful Life (RUL) prediction. This 

approach is formalized by means of a reference framework extending the ISO 

13374 – OSA-CBM standards. The framework guides the integration of novelty 

detection and RUL prediction finally implemented in the scope of a Flexible 

Manufacturing Line part of the Industry 4.0 Lab (the full name of the Lab with 

institution details is removed to guarantee anonymity). 

Keywords: Industry 4.0, predictability, statistical modelling, condition monitoring, 

prognostics 

1. Introduction 

The capability to predict the behaviour of machines is nowadays showing a tremendous 

growth of interest within Industry 4.0-based manufacturing systems. Indeed, 

predictability is a major characteristic for future smart factories built upon Cyber-Physical 

Systems (CPSs) (Napoleone, Macchi, and Pozzetti 2020), where machines are monitored 

to predict their Remaining Useful Life (RUL) (Penas et al. 2017; Xu, Xu, and Li 2018). 

The ability to monitor the machine degradation should be built in CPSs to foster RUL 



prediction (Lee, Bagheri, and Kao 2015), which leverages on Prognostics Health 

Management (PHM) as underlying engineering discipline. 

As a matter of fact, PHM provides the knowledge background for building 

advanced maintenance systems (Guillén et al. 2016). It is generally understood as the 

process of determining the current state of a system in view of reliability and forecast of 

its future state (Pellegrino et al. 2016), based on the detection and interpretation of 

Condition Monitoring (CM) data and degradation signals for RUL prediction (Jardine, 

Lin, and Banjevic 2006; Si et al. 2011). However, the route to this end is not 

straightforward. Based on authors’ industrial experience it is remarked that, when 

initiating a machine CM process, companies typically lack both of historical dataset and 

of Run-To-Failure (RTF) data, due to newly commissioned machines, high reliability of  

machines or poor history of failure records. Physics-based approaches represent a first 

answer, but they are hard to establish for complex systems (Sikorska, Hodkiewicz, and 

Ma 2011). Artificial Intelligence (AI) approaches leverage on high quantity and quality 

of data, which impacts also their training (Cho et al. 2018). Thus, statistical approaches 

are still more used for machine prognostics at the state of the art (Lei et al. 2018). 

The proposed strategy relies on the CM process to model the healthy state and to 

allow the detection of abnormal behaviours when they appear in machine life. With no 

RTF data, only available CM data are exploited through a novelty detection (ND) method. 

The detection of a novelty means the machine has started experimenting a degradation 

and algorithms for AHI definition (Asset Health Index, or Indicator) and RUL prediction 

are triggered to forecast the health state evolution. In this work, a random coefficient 

model is adopted to this end. 

This strategy is formalized through a reference framework extending the ISO 

13374 – OSA-CBM standards. It is based on two constitutive parts: a process model 

formalizing and integrating the PHM, and a data model specifying the machine 



(generically defined as asset) decomposition, its functioning, related information sources 

and formalizing a library of algorithms for ND-RUL integration. The data model is 

introduced since it enables full exploitation of CPS potentialities (Garetti, Fumagalli, and 

Negri 2015). The framework is suited for guiding the integration of ND and RUL 

prediction in the scope of a Flexible Manufacturing Line within the Industry 4.0 Lab (the 

full name of the Lab with details and institution is removed to guarantee anonymity). 

The paper is organized as follows. Section 2 presents the ISO 13374 and OSA-

CBM as foundations of the adopted research methodology. Section 3 illustrates the 

findings of the literature review used to look after RUL prediction models in the Industry 

4.0-like context. Section 4 regards the deployment of the framework, presenting both 

process and data models to integrate ND and RUL prediction. Section 5 presents the Proof 

of Concept (PoC) implemented in the FML of the Industry 4.0 Lab. Finally, section 6 

reports conclusion and further research directions. 

2. ISO 13374 and OSA-CBM as foundations of the research methodology 

The PHM process starts from the raw data collection and ends exploiting information for 

decision-making in maintenance, logistics, engineering design, etc. (Guillén et al. 2016). 

In the maintenance scope, PHM provides the knowledge background for building 

advanced maintenance systems where CBM (Condition Based Maintenance) acts as 

enabler since it allows to monitor the machines’ conditions. Nonetheless, the two terms 

are complementary and CBM/PHM represents an empowered CBM, essential for today’s 

complex systems in industry (Vachtsevanos et al. 2006). 

 Amongst PHM-related standards applicable to manufacturing systems, the ISO 

13374 represents a relevant source (Vogl, Weiss, and Donmez 2014). In the ISO 13374-

1, a set of six functionality levels, intended as phases to be implemented in a CBM system, 

is defined, as well as their inputs and outputs, as summarised in Figure 1. 



Figure 1. ISO 13374-1 levels and their explanation. 

The ISO 13374 has been adopted within the OSA-CBM, which is the first-ever CBM-

oriented technological-independent framework to design ICT solutions where the 

information content is separated from the technical interfaces (Bever 2007). Hence, OSA-

CBM is conceived to provide the structure of a CBM implementation in the form of an 

architecture aimed at fully exploiting the technological deployment. 

 All in all, the ISO 13374 and the OSA-CBM represent relevant sources for the 

implementation of the CBM/PHM by specifying information and data along the process. 

As raw data input, “sensors, transducer, manual entry” are needed to unleash algorithms 

to provide the final support to decision-making. Complementarily, the importance of 

work histories and operational data is remarked to assess machinery health. These 

represent a starting point in regard to data to be considered when starting a PHM process. 

 When dealing with no RTF data, which is the assumption of this work, some 

functionality levels of the OSA-CBM are limited in their application, like the SD, where 

typically only the health state could be known, or the PA, where prediction could not be 

built on proper historical RTF data interpolation. 



3. RUL prediction models: overview and literature review 

Predicting the RUL is one of the main challenges in PA, along with determining the future 

trends of AHI. As such, several models have been developed, especially in Industry 4.0 

manufacturing systems where predictability is a key capability. Thus, this section firstly 

provides an overview of the main RUL prediction models; then, a literature review 

explores prior scientific literature in the scope of this research. 

3.1 Overview on RUL prediction models 

Nowadays several models are available to establish a proper RUL prediction according 

to the current industrial problem (Gao et al. 2015) and relying on both local and cloud 

infrastructures (Caggiano 2018). These models could be grouped into four homogeneous 

families (Lei et al. 2018): physics-based models, statistical models, AI-based models, and 

hybrid models. 

3.1.1 Physics-based models 

Physics-based models, also called model-based approaches (Cubillo, Perinpanayagam, 

and Esperon-Miguez 2016), allow describing the health of a system by relying on 

engineering knowledge of the failure mechanism (Sikorska, Hodkiewicz, and Ma 2011). 

These models are built upon sets of equations describing the system of interest, including 

any physical property as material properties or stress levels. This allows describing the 

dynamics and degradation by applying random loads, and evaluating the effect on the 

RUL (Luo et al. 2003). Moreover, there could exist different formulations of the equations 

according to the domain of application and the complexity the modellers want to reach 

(Beden, Abdullah, and Ariffin 2009). On the whole, physics-based models represent the 

hardest way towards RUL forecasting (Sikorska, Hodkiewicz, and Ma 2011). 



3.1.2 Statistical models 

Statistical models determine the RUL of the machine by fitting available data, either 

through a pre-defined function or through interpolation by adaptable models, using both 

stochastic and random coefficient models. As result, a conditional probability density 

function (PDF) is built, able to predict the machine RUL (Si et al. 2011). These models 

effectively manage variability related to machine, measurement and other (Lei, Li, and 

Lin 2016). It makes statistical models particularly suitable for RUL prediction and some 

examples are reported in Table 1. 

Model Description Reference 

Autoregressive 

model 

The model assumes the future state of the 

machine being linearly correlated with 

previous observations and random errors. 

(Saha, Goebel, and 

Christophersen 

2009) 

Random 

coefficient 

model 

The model describes the stochasticity of the 

degradation processes by introducing random 

coefficients, usually normally distributed, 

which allows providing a PDF of RUL. 

(Chen and Tsui 

2013) 

Wiener 

process model 

Wiener process model is a good choice for 

modelling non-monotonic degradation 

processes and assumes that the future state is 

only a function of the current state. 

(Si et al. 2013) 

Gamma 

process model 

Gamma process model assumes that the 

accumulated damage in different time 

intervals is modelled with independent 

random variables following gamma 

distributions. Gamma process model can also 

describe a time-variant degradation process. 

(Le Son, 

Fouladirad, and 

Barros 2016) 

Inverse 

Gaussian 

process model 

This model assumes that the degradation 

occurs with independent increments that 

follow an inverse Gaussian distribution. It is 

used for monotonic degradation patterns and 

random factors can be incorporated to model 

variability. 

(Pan, Liu, and Cao 

2016) 

Markov model This model describes a stochastic degradation 

with independent increments. It lies in the 

assumption that it is possible to determine the 

health state directly, also those which are 

hidden (HMM - Hidden Markov Models). 

(Liu et al. 2015) 

Proportional 

hazards model 

This model assumes that the hazard rate of a 

system is made by the combination of a 

baseline hazard and covariate functions. It 

integrates the event data and CM data which 

make it achieve a high level of accuracy. 

(Pham, Yang, and 

Nguyen 2012) 

 



Table 1. Examples of statistical models. 

3.1.3 AI-based models 

AI-based models rely on the observation of a phenomenon to discover underlying 

degradation pattern of the machine (Cattaneo and Macchi 2019). They could be broadly 

categorised into supervised and unsupervised models. AI-based models are not forced to 

respect any physical (in terms of mechanical explanation of the degradation) or statistical 

(in terms of compliance with specific models associated with a PDF) property. Thus, they 

particularly fit the case of complex systems. Table 2 provides examples of these models. 

Model Description Reference 

Artificial 

Neural 

Networks 

(supervised) 

They are the most extended AI technique for RUL 

prediction. ANNs can model processes with complex 

non-linear relationships. They tend to be quite 

accurate if they are trained with the right (large) 

amount of good quality data (as historical datasets). 

Their low transparency is one of their limitations. 

(Tian 2012) 

Decision Tree 

Method 

(supervised) 

This method is composed by a set of decision rules. 

Visually it is like a tree, each node is a decision point 

where two attributes of observations are compared. 

Each node branches into two paths towards the leaf 

nodes, which provides a classification of all the 

instances. 

(Yeo and 

Grant 2018) 

Support Vector 

Machine 

(supervised) 

Relying on supervised learning, given a collection of 

labelled data sets a SVM training algorithm builds a 

model that assigns non-labelled examples to one of 

the categories created during the training stage. 

(Huang et 

al. 2015) 

Cluster 

Analysis 

(unsupervised) 

These techniques allow to subdivide the initial 

dataset into two or more subsets according to a 

similarity criterion. The definition of the similarity 

(or dissimilarity) is central in these techniques. A 

proper selection of this criterion allows the separation 

of the observations into subsets, each of them having 

different properties. 

(Flath and 

Stein 2018) 

 

Table 2. Examples of AI-based models. 

3.1.4 Hybrid models 

To overcome the limitations of each model family, hybrid solutions are also implemented 

combining two or more models of different natures. Examples of these applications are 



different, as (Di Maio, Tsui, and Zio 2012) or (Zemouri and Gouriveau 2010) that 

combine AI-based and statistical models. 

3.2 Review of RUL prediction models in Industry 4.0-based manufacturing 

systems 

RUL prediction models are cornerstones of Industry 4.0-based manufacturing systems, 

built upon CPSs, defined as smart embedded and networked systems (Lee, Bagheri, and 

Kao 2015) which allow connecting the physical and the virtual worlds to enable advanced 

monitoring and controlling capabilities. Digital Twin (DT) is a core part of CPSs, 

representing the virtual counterpart of the physical machine for enhanced simulation for 

different purposes (Negri, Fumagalli, and Macchi 2017), no more restricted to design, but 

including the machine’s operations (Polenghi, Fumagalli, and Roda 2018). Also, DT 

fuses the data from multiple sources, thus boosting RUL prediction in production 

environments. A literature review is useful to shed light on current RUL prediction 

models, considering DT as a relevant part in Industry 4.0 CPS-based smart factories. 

To properly organize the literature review, a three-step methodology is adopted, 

whose details are specified in Figure 2. For the sake of analysis, articles have been 

categorized according to four dimensions: industrial sector, level of analysis, simulation 

type and RUL model. Simulation type is included as it is a distinctive element of a DT 

(Negri, Fumagalli, and Macchi 2017). The results are summarized in Table 3. 



 

Figure 2. Literature review process. 



Reference Industrial sector Level of analysis Simulation type RUL model 

(Kumar, Chinnam, and Tseng 2019) Manufacturing - - S 

(Raman and Hassanaly 2019) Aerospace Fleet/System Online - 

(Tygesen et al. 2019) Petrochemical System (OGPS) - H: AI + P 

(Cho et al. 2018) Manufacturing Machine (Milling) Online AI 

(Sivalingam et al. 2018) Wind farm Machine (Wind turbine) - S 

(Liu et al. 2018) Manufacturing Component Online S 

(Qi and Tao 2018) General - STD - 

(Luo et al. 2018) Manufacturing Machine (Milling) Online AI 

(Tao et al. 2018) Wind farm Machine (Wind turbine) STD, Online H: AI + P 

(Patnaik and Wu 2018) Aerospace Component Online H: AI/S + P 

(Zaccaria et al. 2018) Aerospace Fleet STD, Online H: AI + P 

(Rúbio, Dionísio, and Torres 2018) Manufacturing Component (Electric motor) Online AI 

(Vathoopan et al. 2018) Manufacturing Component Online - 

(Lee et al. 2018) General - - - 

(Shubenkova et al. 2018) Automotive Fleet Online S 

(Liu, Meyendorf, and Mrad 2018) General - - - 

(Moyne and Iskandar 2017) Semiconductor - - S 

(Li et al. 2017) Aerospace Component - H: P + S 

(Kraft and Kuntzagk 2017) Aerospace Fleet Online P 

(Boutrot et al. 2017) Petrochemical System (OGPS) Online H: AI/S + P 

(Li and Roy 2015) Manufacturing Machine (Picking machine) STD, Online H: AI + S 

(Tuegel 2012) Aerospace System (Airframe) - S 

(Glaessgen and Stargel 2012) Aerospace - - - 

OGPS: Offshore Oil and Gas Production Structure, STD: Simulated Training Data, H: Hybrid, S: Statistical, P: Physics-based, AI: AI-based 

Table 3. Eligible documents analysis.



As observations from the literature findings. 

• Manufacturing sector shows different applications of RUL prediction especially 

for machine tools, mainly performed at machine level; examples are milling 

machines (Cho et al. 2018) and drilling machines (Kumar, Chinnam, and Tseng 

2019). 

• AI-based and statistical models are the most widely discussed to predict the RUL, 

either applied alone or hybridized (results coherent with (Lei et al. 2018)). 

• Hybrid models are widely used, especially in the form physics-based model joint 

with one of the other two types; typically, this is done as support if RTF data are 

low in number or not available, for example in (Li et al. 2017; Boutrot et al. 2017). 

• AI-based models show an increasing application due to their ability in tackling 

heterogeneous data for machine behaviour forecasting (Luo et al. 2018); they also 

rely on physics-based models to define failures, underlining their need to rely on 

data for a successful RUL prediction. 

Concluding, the availability of data appears as the major cornerstone for the application 

of AI-based models, limiting their performance if not or few RTF data are present. As 

(Cho et al. 2018) notices: “available data limits application of machine learning 

algorithms and thus supervised learning and semi-supervised learning are not available 

for data analytics”. Therefore, when no historical or RTF data are available, statistical 

models actually result to be the only feasible way (Hsieh et al. 2012) for monitoring the 

current state of the asset and predict its future state; this is possible by assuming a certain 

statistical function derived from sources like technical or scientific literature. 



4. Deployment of the proposed framework to integrate ND and RUL 

prediction 

The proposed framework aims to integrate ND and RUL prediction in context of Industry 

4.0-based manufacturing systems, assuming no availability of RTF data and, therefore, 

statistical modelling as the key capability. 

The framework extends the ISO 13374 – OSA-CBM in three functionality levels, SD, 

HA and PA, and with an additional preparatory phase, as illustrated in Figure 3, inspired 

by (Guillén et al. 2016). It is composed of two constitutive parts, namely the process 

model and the data model. The former aims at providing guidelines from a process 

viewpoint, focused on the interesting ISO 13374 – OSA-CBM levels; while the latter 

provides support in decomposing the asset of interest in its components and understanding 

its functioning, in identifying the information sources, and in structuring a library of 

possible alternative algorithms to be implemented. Being the basis of the framework, 

process and data models are thought to formalize the strategy for CBM/PHM 

implementation, through guidelines and supporting models tailored to the specific issue 

of no RTF data. 

 

Figure 3. Proposed framework: process and data models. 

4.1 Process model 

The process model explains how to integrate ND and RUL when RTF data are not 

available by retracing the levels, from L0 to L6: 



• L0 is introduced even if not present in the ISO 13374; it aims at exploiting all 

existing prior knowledge about the asset of interest in the system; 

• L3, L4 and L5 focus on the guidelines to integrate ND and RUL prediction; 

• L1, L2 and L6 are discussed to complete the whole process viewpoint. 

4.1.1 L0 – Asset Analysis 

Preliminary fundamental activities for PHM entail the selection of the most critical asset/s 

in the portfolio, its/their decomposition and functioning. To this end, standards are 

available: 

• ISO 13329-2 includes an equipment audit, aiming at decomposing the asset, and 

a reliability and criticality audit, exploring relative failure modes and criticalities; 

• ISO 14224 offers support in properly decomposing the asset; 

• ISO 13306 offers an overview of the appropriate terminology to be used. 

After having defined the physical structure (as asset decomposition), it is needed to (i) 

identify all modes in which the components could fail, the corresponding causes, and 

effects and (ii) prioritize the assets, and/or their failure modes, on which to focus the 

implementation of the PHM. The prioritization is supported by PHA (Process Hazards 

Analysis), which is a set of tools built upon risk management principles; amongst them, 

FMECA (Failure Modes, Effects and Criticality Analysis) is widely used, as described in 

IEC 60812. 

4.1.2 L1 and L2 – Data Acquisition and Manipulation 

The acquisition/collection of raw data about/from the asset is the target of DA level. Data 

may be of two kinds (Jardine, Lin, and Banjevic 2006): event data, related to the 

occurrences the asset went through in its life, and CM data, namely the measurements 

related to the asset conditions/states. DA is not investigated according to the scope of this 



research, but relevant references are (Ćwikła 2014) and the ISO 13xxx family entitled 

“Condition monitoring and Diagnostics of machines”. 

 Then, DM is devoted to processing the digital data to obtain meaningful data. It is 

the most demanding activity since it is a combination of both analytic methods and 

engineering knowledge (Wilder-James 2016). DM encompasses three main sub-steps: 

1. Data pre-processing, whose purpose is checking integrity and consistency of 

collected raw data, smoothing and eliminating the noise that might characterize 

them, and coping with missing values or errors; 

2. Feature extraction from the acquired signals (Leturiondo et al. 2017), in different 

domains of interest (time, frequency, time-frequency); 

3. Feature selection, aimed at selecting only the features that properly describe the 

degradation process of the asset under analysis. 

More details may be found in (Alasadi and Bhaya 2017) and (García et al. 2016), which 

includes Big Data. 

4.1.3 L3 – State detection 

The identification of relevant features prepares for understanding the machine state/s. 

Firstly, the working regimes must be identified. Indeed, a machine usually works under 

dynamic working conditions, but most of the existing CM approaches focus on a single 

operating condition. Consequently, the asset health state is not properly assessed, and 

detection performance is unsatisfactory (Wang et al. 2019). The most common models 

addressing this issue are: dynamic multi-state models, which describe the state transition 

probability (Li et al. 2019; Tao, Zio, and Zhao 2018), and clustering algorithms (Wang et 

al. 2019). 

 Once defined the working regimes, the SD aims at developing a model for the 

asset whose RTF data are not available, and so features values describing the unhealthy 



state, labelled as “abnormal state”, are not present. Coping with this, the proposed 

framework implements a ND algorithm, which aims at recognizing that test data differ to 

some extent from data available in the training dataset (Pimentel et al. 2014). In this 

optics, SD represents a one-class classification problem, where a single group of data 

(corresponding to the healthy state), must be differentiated from all other possibilities. 

 Different ND approaches are available, such as probabilistic, distance-based, and 

reconstruction-based. In this work, the former is considered and it is assumed that the 

healthy class is well sampled and follows a statistical distribution (Pimentel et al. 2014). 

 Each new sample from the machine could be compared with these pre-defined 

distributions upon establishing a proper novelty threshold, i.e. a control limit that 

separates the healthy class to the abnormal one. In the followed probabilistic ND 

approach, the novelty threshold is defined as z(x)= yabnormal such that every new feature 

value is considered “normal” if P(valuefeature) <  yabnormal or “abnormal” otherwise (being 

P(x) the cumulative probability associated with p(x), where p(x) is the PDF of the 

corresponding distribution). 

 Concluding, the SD level is particularly relevant to exploit the data analysis aimed 

at detecting novelties in different working regimes. 

4.1.4 L4 – Health Assessment 

A novel behaviour is experienced when the feature exceeds the novelty threshold yabnormal 

and so the machine is working abnormally. At least three states could be identified, where 

yfeature is the measured value of the feature and yfaulty is the threshold for the faulty state: 

• Healthy state (yfeature < yabnormal): in this state the machine is behaving healthy and 

the RUL is not needed to be predicted, thus saving computational power especially 

useful for scaled up ND applications; 



• Abnormal state (yfeature ≥ yabnormal & yfeature < yfaulty): in this state, the machine is 

still able to perform its function, but a novelty arises; the event yfeature ≥ yabnormal 

triggers the RUL prediction; 

• Faulty state (yfeature ≥ yfaulty): in this case, the machine is not anymore able to 

deliver the function it is designed for. 

While yabnormal could be defined through a probabilistic approach, the faulty threshold 

yfaulty is harder to set, since faults have not been experienced yet. As such, if the failure 

mechanism physics is not known, yfaulty could be fixed by comparing similar machines 

owned by the company. Anyhow, the selection is dependent on the company risk aversion 

to asset failures (Polenghi et al. 2019): yfaulty closer to yabnormal is dictated by very stringent 

product/process requirements and quality, while a larger yfaulty implies more relaxed 

business or operational constraints. 

4.1.5 L5 – Prognostic Assessment 

Once fixed abnormal and faulty threshold, the PA involves the prediction of the RUL 

through the projection in time of interesting AHI. The AHI is a significant feature, 

extracted and selected during L2-DM, that is used for prognostic analyses purposes (Niu, 

Yang, and Pecht 2010). Given the unavailability of RTF data, the degradation model of 

the AHI must be assumed, and the proposed framework relies on statistical models. 

As anticipated, the degradation model is triggered only if the AHI overcomes the 

abnormal state threshold yabnormal. Consequently, the RUL is calculated as the time left 

before the AHI will cross the faulty state threshold yfaulty. In mathematical terms, the RUL 

(lk) at the current time tk can be expressed as in Equation 1 (Lei et al. 2018): 

𝑙𝑘 = inf(𝑙: 𝑥(𝑙 + 𝑡𝑘) ≥ 𝑦𝑓𝑎𝑢𝑙𝑡𝑦)   ------------Eq. 1 

where inf(∙) represents the inferior limit of a variable, 𝑥(𝑙 + 𝑡𝑘)is the state at𝑙 + 𝑡𝑘 with 

𝑙 ≥ 0. This formulation is applicable with no RTF data since it does not require previous 



failure records to be used, but only the definition of the faulty threshold. Analogously, 

Equation 2 expresses the RUL by considering the probability of failure (Pf) obtained by 

integrating the PDF (fRUL): 

∫ 𝑓𝑅𝑈𝐿(𝑡)𝑑𝑡
𝑡

0
=𝑃𝑓(𝑡) -----------Eq. 2 

4.1.6 L6 – Advisory Generation 

The levels L3, L4, and L5 support the maintenance decision-making and, by leveraging 

on available information, different decisions could be taken: 

• No maintenance action is needed: all monitored values are within the healthy state 

bounds (yfeature < yabnormal); 

• Reactive action: the monitored value exceeds the threshold of the faulty state 

(yfeature ≥ yfaulty); so, the machine is likely to fail and its function should be restored 

through a corrective maintenance action; 

• Proactive action: the monitored value is between the abnormal and the faulty state 

(yfeature ≥ yabnormal & yfeature < yfaulty); so, a maintenance action should be scheduled 

in the next n period/s according to the results of the prognostics algorithm/s, i.e. 

based on the predicted AHIs or RUL. 

4.2 Data model 

The data model, formalised in UML (Unified Modelling Language) as recommended by 

the ISO 19505-1, complements the process perspective. The data model defines the 

needed classes and relationships in the PHM process. As such, it empowers the process 

model in two ways: 

• At levels L0 (AA) and L1 (DA), it supports asset decomposition, functioning and 

identification of sensors and information sources for DA; 

• At level L2 (DM), it supports data processing since it provides a library of 

algorithms to be implemented in levels L3 (SD), L4 (HA) and L5 (PA). 



The classes of the data models mainly come from international standards in line with the 

need of adopting a general and shared vocabulary. 

4.2.1 L0, L1 – Physical and logical description of the asset and the information 

sources 

The decomposition of the asset and its functioning is essential for the PHM development 

and the data model offers support to this end by (i) enabling 1-to-1 relation between the 

measured variables and its component/s, thus identifying relevant information sources, 

and (ii) tracking the asset operating states, both in terms of production function and 

healthiness. 

 The decomposition of the asset and its functioning is reported in Figure 4. It 

integrates several international standards, like ISO 14224, ISO 13306, ISO 13372, and 

scientific literature. 

 

Figure 4. Data model for L0 and L1. 

More in details: 

• The Asset class is central and is defined as an item, thing or entity that has 

potential or actual value to an organization (ISO 55000 2014), which is 



comparable with “item” in ISO 13306. However, various definitions are available. 

Thus, instances of Asset are, for example, pumps, turning or milling machines. 

• One or more Asset(s) belongs to an Asset_system, which is defined as a group of 

Asset that share the same functional goal or that are homogeneous in their 

technology, like assembly systems realising a complete product or a turning 

machines department in a job shop, respectively. 

• The Asset is decomposed in one or more Asset_functional_unit, which enables 

the Asset(s) to work, e.g. lubrification unit, cooling unit, or machining unit. The 

Asset_functional_unit is further decomposed into Asset_functional_subunit 

and, furthermore, into Asset_maintainable_item. The former is a subunit needed 

for the functional unit to work, e.g. a cooling unit needs a refrigerator subunit and 

a distribution subunit to work properly; the latter is the item which is maintained 

in the subunit, e.g. cooler, coupling, filter. 

Relating to the hierarchical decomposition of the asset, it is also important to understand, 

as prior knowledge, the functional failures the asset or its functional units may undergo 

and the failure mode/s of the maintainable item. To this regard, the main reference is ISO 

13372. 

• An Asset has an Asset_function, which is the required function it must perform 

by design. This could be of different types, like manufacturing, washing, 

assembly, etc. If the Asset_function cannot be performed an 

Asset_functional_failure exists, e.g. the turning machine is no more able to 

realise the turned metal product. 

• Likely, the Asset_functional_unit has an Asset_functional_unit_function, 

which may have an Asset_functional_unit_functional_failure. For example, the 

machining unit of a turning machine, whose function is to remove metal from the 

raw metal product, is no more able to perform it. 



• The functional failures may come from the occurrence of a Failure_mode that is 

the way in which the failure manifests in the Asset_maintainable_item. Each 

Failure_mode generates a Failure_effect. For example, the electro-spindle 

whose header is worn out and the cut is no more performed, leads to downtime as 

failure effect. 

When the Asset is in service, its operations should be considered as well. In this regard, 

international standards offer few supports in defining asset operations and states if not in 

general terms. The following states are considered: 

• Asset_health_state defines the healthy, abnormal, or faulty state in which the 

Asset could be; 

• Asset_working_state describes the set of conditions under which the asset must 

work, e.g. the setup of a specific part program on a milling machine that defines 

the cutting speed and the feeding rate; this Asset_working_state influences the 

Asset_health_state since some programs may be more critical for the Asset 

rather than others, inducing different speeds for the degradation processes and the 

subsequent state transitions from healthy to abnormal and faulty states. 

Finally, the information sources must be identified and the ISO 13379-1, ISO 17359, ISO 

15531-1, ISO 13374-1 provide some references. 

• Sensor is a class representing an item that has the precise goal of measuring a 

specific quantity, e.g. temperature or vibration; it is essential to provide CM data 

for the PHM. 

• Other data may come from the Controller(s) of the Asset_functional_unit, such 

as PLC, Programmable Logic Controller, or CNC, Computerized Numerical 

Control, that generate CM data as well. 

• Information systems on the shopfloor, like MES (Manufacturing Execution 

System) or CMMS (Computerized Maintenance Management System), provide 



event data. They consider all maintenance-related occurrences the asset 

underwent, like installation, breakdown, overhaul, but also production-related 

occurrences, like production plans and part programs. These may be relevant for 

defining the Asset_working_state. 

4.2.2 L2, L3, L4 and L5 – Algorithms for data analysis 

The data model offers support also to the sub-steps of the DM phase, that are data pre-

processing, feature extraction and feature selection, for which a library of algorithms is 

required: 

• firstly, an Algorithm_preprocessing is needed for different reasons, such as data 

cleaning, data fusion and other issues; 

• secondly, an Algorithm_feature_extraction needs to be applied to derive, from 

the original dataset of measured variables, a set of Feature; 

• finally, an Algorithm_dimensionality_reduction aims at reducing the Feature 

space by identifying those features that mainly describe the variability, which are 

then selected for use in next levels (Significant_feature). 

It is worth remarking that an inheritance of the class Significant_feature is the class 

Asset_Health_Index. Even though the two may seem the same concept at a first sight, 

the extant literature outlines a distinction: 

• Significant_feature highlights the set of significant features able to describe the 

behaviour of the Asset_maintainable_item and the used term is compliant with 

previous CBM-related literature for SD and HA (Pimentel et al. 2014; 

Vachtsevanos et al. 2006); 

• Asset_Health_Index is adherent in the meaning but different in the scope of 

usage; according to the extant literature, the term “health indicator” (or other 



equivalents such as AHI) is used when the goal of the analysis is the PA (Niu, 

Yang, and Pecht 2010). 

Therefore, in the data model, the Significant_feature is both used by the 

State_detection_analysis and the Diagnosis_analysis, while the Asset_Health_Index 

is used for Prognosis_analysis, which is the core of the proposed framework. In PA, a 

set of Algorithm elaborates the Asset_Health_Index, which was previously identified 

starting from the set of Significant_feature adopted during the State_detection_analysis 

according to a ND method. 

 Looking specifically at PA, the analyses could rely on a library of Algorithm, 

encompassing the following families: AI_model, Statistical_model, and 

Physics_model, with corresponding inheritances as summarised in Figure 5. 

 

Figure 5. Data model: class Algorithm and its inheritances. 

Theoretically, each of the above models may be applied, but their implementation is 

constrained by the availability of data (e.g. with or without RTF data). 



5. Proof of Concept in an Industry 4.0-based Flexible Manufacturing Line 

The framework is used in a PoC to guide the integration of ND and RUL in the context 

of an FML in the Industry 4.0 Lab (the full name of the Lab with details and institution is 

removed to guarantee anonymity), which is a controlled environment offering industry-

like challenges for operation and maintenance management. According to the results of a 

FMECA study, the drilling station is resulted as the most critical asset, whose details 

could be found in (Cimino, Negri, and Fumagalli 2019). 

5.1 L0 – Asset Analysis 

The drilling station is thus targeted, and its hierarchical decomposition and functioning 

are represented as data model instances in Figure 6 where, for the sake of simplicity, the 

class attributes are avoided. 

 

Figure 6. Data model instantiation for asset decomposition and functioning. 

The acceleration provides useful information in case of drilling axis imbalance since this 

failure mode is related, through prior knowledge, to a vibration analysis, often used in the 

literature for rotating component (Heng et al. 2009). 



5.2 L1 – Data Acquisition 

The DA relies on the ICT architecture of the Industry 4.0 Lab, structured as in Figure 7. 

 

Figure 7. Industry 4.0 Lab ICT architecture. 

The PLC of the drilling station provides signals mainly referred to the operational state. 

The MATLAB model establishes a real-time connection with the client-server through 

OPC-UA (Open Platform Communications Unified Architecture) protocol, a standard 

M2M (machine-to-machine) communication protocol according to IEC 62541-100. The 

MATLAB model then calculates the possible state: Working, Idle, Error, Emergency and 

Energy Saving (Cimino, Negri, and Fumagalli 2019). The working state triggers the 

acquisition of accelerations, which are measured through a Raspberry Pi sensor installed 

on the drilling axis (Figure 8), with a sampling frequency of 200 Hz. 

 

 

Figure 8. Raspberry Pi installed on drilling axes. 



On average, each drilling cycle, making two holes on left (Figure 6), lasts for 11 seconds, 

thus collecting 2200 acceleration values then sent, through a MQTT protocol, to a 

predefined server that stores them in a non-relational document database, namely 

MongoDB. For each cycle, also date and timestamp are saved. 

5.3 L2 – Data Manipulation 

In Figure 9, the instantiation of the data model reports all classes and instances related to 

levels L2 to L5, discussed in the remainder. 

 

Figure 9. Data model instantiation for L2, L3, L4 and L5. 

The RMS (Root Mean Square) is selected among the possible time-based statistical 

features of the acceleration signal, since it has a particular physical meaning. It 

characterizes the amount of dissipated energy during the working process due to 

vibrations (Večeř, Kreidl, and Šmíd 2005). In case damage occurs to the drilling axis, due 

to an imbalance, the vibration level increases and, as the damage progresses, the 

dissipated energy increases too, directly impacting on the RMS values. 



 Thus, the RMS of the axis is selected as both significant feature and AHI to 

evaluate the health of the drilling station. Thus, it is evaluated for all three axes, x, y, and 

z, as described in Equation 3 and 4. 

𝑅𝑀𝑆𝑎𝑐𝑐𝑗 =√
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1 𝑗 = {𝑥, 𝑦, 𝑧} ---------------Eq. 3 

𝐴𝐻𝐼𝑗 = 𝑅𝑀𝑆𝑗∀𝑗 = {𝑥, 𝑦, 𝑧}-----------Eq.4 

When a cycle is operated, a single RMS point, for each axis, summarises 2200 

acceleration values, as cleared out in Figure 10. 

 

Figure 10. RMS real-time evaluation. 

5.4 L3 – State Detection 

According to the ND approach described in the framework, it is necessary to determine 

what level of RMS indicates the machine healthy state. 

Since no RTF are available, an off-line production campaign of 100 equal workpieces is 

realized, measuring accelerations signals; these result from drilling working conditions 

that do not change in time, as in this PoC a unique kind of process/product is performed 

along the line. The RMS values are then calculated via MATLAB and they are assumed 



to describe the healthy state. According to the probabilistic ND approach, a Gaussian 

distribution is assumed for the RMS values on the three axes and a normality test is 

performed, with a significance level of 0.005. Figure 11 shows the probability plots. 

 

Figure 11. Probability plots for RMS values on the three axes. 

The test is satisfied since the RMS value lie close to the straight line representing the 

normality condition (Johnson and Wichern 2002). Therefore, the healthy state is properly 

modelled through a Gaussian distribution and every new sample, collected in real-time, 

can be compared with the healthy class to see if it belongs to it or not. This is not critical 

for on-line monitoring since the comparison takes in total around 3 seconds, including 

OPC-UA connection and RMS evaluation, on a common laptop (i7-8th generation 3,5 

GHz, 16 GB of memory). It guarantees a real-time computation with respect to the time 

requirements of the operations (each working cycle lasts around 11 seconds, a ND is 

computed in the same time scale of one cycle; in the FML under study this enables to 

avoid to process a next workpiece, if needed). 

 The comparison is made by defining a novelty threshold. For the Gaussian 

distribution, the novelty threshold is defined at a distance of three standard deviations (σ) 

from the mean (μ), i.e. yabnormal = P(μ + 3σ) (Grubbs 1969). Thus, every new RMS is 

labelled “healthy” if P(RMS) < yabnormal or “abnormal” otherwise, where yabnormal = 

P(RMSUP ) = P(μ + 3σ). This assumption is confirmed by previous work (Fumagalli et al. 

2019), and RMSUP can be described by Equation 5. 

𝑅𝑀𝑆𝑗
𝑈𝑃 =𝜇𝑗 + 3𝜎𝑗 𝑗 = {𝑥, 𝑦, 𝑧}----------Eq.5 



Such distance, regardless of 𝜇 and 𝜎, always corresponds to yabnormal = P(RMSUP) = P(μ + 

3σ) = 0.9987. This means that a “healthy” RMS falls inside the healthy boundary limit in 

the 99.87 % of the cases. It is worth remarking that only the upper bound is calculated 

due to the physical meaning of RMS. 

5.5 L4 – Health assessment 

By classifying the RMS, the asset could be assessed if in a healthy or abnormal state. Yet, 

it is still needed to determine if the asset is faulty. Figure 12 summarises the three states 

in which the drilling station could be. 

 

Figure 12. States of the drilling station. 

While the RMSUP has been previously set up, the threshold RMSFAULT could not be fixed 

a priori since no previous RTF data are available, so the behaviour of the asset in the 

faulty state is unknown. In this PoC, a constant threshold for RMSFAULT is fixed according 

to (Nectoux et al. 2012) and the faulty state starts when the RMS exceeds by four times 

RMSUP (RMSFAULT = 4RMSUP). 

 According to the proposed framework, the RUL is not predicted unless the RMS 

enters in the abnormal state, allowing to save computational power for scaled up 

applications that may include several variables from the asset. 



5.6 L5 – Prognostic assessment 

Being the states defined, the prognostic assessment could start. The future behaviour of 

the AHI, i.e. RMS, is not known due to the lack of RTF data and its evolution must be 

assumed from scientific literature or company expertise. In this PoC, statistical methods 

are applied due to their wide use in case of missing RTF data. It results that the 

exponential trend of the RMS is a promising approximation of the real trend (Nectoux et 

al. 2012). More precisely, to model this exponential growth, the selected method is the 

Exponential Degradation Model (EDM) (Gebraeel et al. 2005), belonging to the family 

of random coefficient statistical methods, expressed in Equation 6 and Table 4. 

𝐴𝐻𝐼̂ (𝑡) = 𝑅𝑀�̂�(𝑡) = 𝜗 + 𝜃𝑒(𝛽𝑡+𝜖(𝑡)−
𝜎2

2
)
--------------Eq.6 

Term Definition 

𝐴𝐻𝐼̂ (𝑡) Asset Health Index estimation for time t, in this case equal to the 

maximum of the RMS in the three directions x, y, z 

𝜗 Intercept terms considered as a constant 

𝜃 ln(𝜃)~𝑁(𝜇𝜃 , 𝜎𝜃
2) – log-normal random variable 

𝛽 𝛽~𝑁(𝜇𝛽 , 𝜎𝛽
2) – random variable 

𝜖(𝑡) 𝜖(𝑡)~𝑁(𝜇 = 0, 𝜎2) – noise term 

 

Table 4. EDM terms definition. 

In the beginning, when few data are available, the model is set up with an arbitrary prior 

distribution, described through high variance (i.e. the variances of 𝜃 and 𝛽 are fixed equal 

to 106). As CM data becomes available, the model is updated, and the approximating 

function is adjusted accordingly. This is performed during the operation of the asset. The 

algorithm updates automatically the EDM random coefficient at the end of each working 

cycle allowing for better real-time performance of degradation process description and 

RUL prediction. Figure 13 reports an example for the RMS on the z-axis. 



 

Figure 13. Example of real-time application in the drilling station for z-axis. 

When the axis enters in the abnormal state, then the predicted trend of the 𝐴𝐻𝐼̂  (RMS) is 

plotted, together with an alert note “Degradation Detected” and the actual cycle number. 

In Figure 13, also the confidence interval (CI) is plotted (orange dashed line) for the 

predicted 𝐴𝐻𝐼̂ . As expected, the CI is wide as the first abnormality is detected and 

narrows down as drilling station operates since the EDM random coefficients are updated 

based on new CM data, as shown in Figure 14: the prediction becomes more accurate as 

the cycles advance. 

 

Figure 14. CI narrowing as drilling station operates. 

Furthermore, it is possible to estimate the RUL since the statistical method provides a 

PDF, called fRUL(t). The probability of failure Pf can be calculated according to Equation 

2 (from the initial instant to the current time instant) and it serves as a basis for L6. 



5.7 L6 – Advisory generation 

The previous developments allow establishing an advisory generation based on the real-

time values of the 𝐴𝐻𝐼̂ s, which are RMS values of the three axes in our PoC. Therefore, 

the monitoring activity supports three actions: 

• No maintenance action is required if P(RMSi) < P(RMSi
UP) 

• Reactive action: the drilling station must be stopped, and corrective maintenance 

should take place if P(RMSi)> P(RMSi
FAULT); 

• Proactive action is based on the predicted 𝐴𝐻𝐼̂  and must take place in tdays as 

highlighted by the prognosis algorithm. 

The tdays is evaluated by comparing the maximum allowed probability of failure Pf
max (or, 

equivalently, a minimum acceptable reliability Rmin) and the current Pf. A conversion from 

the number of cycles tcycles to tdays may be required, as expressed in Equation 7 and 8, 

completed by Table 5. 

𝑡𝑐𝑦𝑐𝑙𝑒𝑠 = {𝑡 ∶  ∫ 𝑓𝑅𝑈𝐿𝑑𝑡
𝑡

𝑜
= 𝑃𝑓

𝑚𝑎𝑥 = 1 − 𝑅𝑚𝑖𝑛}  ---------Eq.7 

𝑡𝑑𝑎𝑦𝑠 =
𝑡𝑐𝑦𝑐𝑙𝑒𝑠

𝑈𝑅̅̅ ̅̅ ×𝑃𝐶𝑑𝑎𝑖𝑙𝑦
  ------Eq.8 

Term Definition 

𝑡𝑑𝑎𝑦𝑠 Time units remaining until R ≤ Rmin [days] 

𝑡𝑐𝑦𝑐𝑙𝑒𝑠 Time units remaining until R ≤ Rmin [cycles] 

𝑈𝑅̅̅ ̅̅  Average utilization rate of the drill [%] 

𝑃𝐶𝑑𝑎𝑖𝑙𝑦 Daily production capacity of the drill [cycles/day] 

 

Table 5. Terms to transform cycles in days. 

In this PoC, the minimum acceptable reliability Rmin is set to 0.98 since the station is 

fundamental to the overall work of the FML. 

6. Conclusions 

This research work investigates the integration of ND and RUL prediction in Industry 



4.0-based manufacturing systems. In such advanced systems, real-time monitoring and 

predictability are relevant characteristics. Nevertheless, to implement the prediction of 

failures some limits typically exist in practice, when no historical and/or RTF data are 

available. This happens with newly commissioned or highly reliable machines, or due to 

poor recording activity. In these cases, the RUL prediction is particularly challenged since 

it is not possible to forecast future trend by looking at previous machine history. 

The developed framework aims at extending the functionality levels proposed by 

the ISO 13374 and OSA-CBM standards, taken as reference, to improve particularly SD, 

HA and PA. It aims at integrating ND and RUL prediction through statistical modelling 

of the healthy state of the machine. The use of statistical models is indeed supported by 

the literature review. In the specific implementation of the PoC in a laboratory 

environment, the framework is built on EDM. It enables the real-time update of its 

coefficients, allowing the model to be more precise as long as more CM data are available. 

All this is built on top of a decomposition and understanding of the asset, as a preparatory 

phase. 

Overall, the following contributions are claimed by the proposed framework: 

• the framework provides a specific strategy for CBM/PHM implementation, tailored 

to the specific issue of no RTF data; in particular, it provides guidelines and 

supporting models both from the process and data viewpoints;  

• the framework sets the implementation strategy based on industry-related knowledge, 

adopting a general and shared vocabulary rooted in several international standards, 

like the ISO 13374 and 13379-1, among others; 

• the framework leverages on a library of algorithms (physics-based, statistical, and AI-

based), each one with specific modelling capabilities; thus, for a certain algorithm to 

be applied, the case-related characteristics and boundary conditions (as availability of 

RTF data) should be evaluated; 



• the framework implies assets working under dynamic working conditions; indeed, the 

proposed modelling of the asset working regimes, useful for ND for asset healthiness 

assessment, provides a seed to further explore in challenging manufacturing contexts 

with varying production mixes and processing requirements. 

It is of particular interest the case when new products or processes are introduced due to 

varying production mixes. The approach suggested in this work may be adopted and 

further extended to cope with this variability: a change of working conditions is identified 

through ND algorithms (at the SD level) and changes of degradation model and future 

trend in the AHI are adjustable through the Random Coefficient modelling (at PA level). 

Future research is also required to extend the framework with higher-level analysis to 

drive the PHM process, especially linking the PHM process with asset prioritization based 

on risk management decisions. Finally, a prospective work may regard to connect this 

research with the investigation on Collaborative Prognostics of industrial assets. 

Exploiting this new theory would enable to manage the lack of RTF data through 

clustering the behaviour of assets taken from an entire fleet of assets, also considering 

their different manufacturing contexts (i.e. with varying production mixes and processing 

requirements). This will enable an application at scale of AI-based models, as the few or 

no RTF data collected by the single asset are now surpassed by the different premises of 

single collaborative assets present in the fleet. 
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