: The COVID-19 pandemic has hit heavily many aspects of our lives. At this time, genomic research is concerned with exploiting available datasets and knowledge to fuel discovery on this novel disease. Studies that can precisely characterize the gene expression profiles of human hosts infected by SARS-CoV-2 are of significant relevance. However, not many such experiments have yet been produced to date, nor made publicly available online. Thus, it is of paramount importance that data analysts explore all possibilities to integrate information coming from similar viruses and related diseases; interestingly, microarray gene profile experiments become extremely valuable for this purpose. This chapter reviews the aspects that should be considered when integrating transcriptomics data, considering mainly samples infected by different viruses and combining together various data types and also the extracted knowledge. It describes a series of scenarios from studies performed in literature and it suggests possible other directions of noteworthy integration.

Scenarios for the Integration of Microarray Gene Expression Profiles in COVID-19-Related Studies

Bernasconi, Anna;Cascianelli, Silvia
2022-01-01

Abstract

: The COVID-19 pandemic has hit heavily many aspects of our lives. At this time, genomic research is concerned with exploiting available datasets and knowledge to fuel discovery on this novel disease. Studies that can precisely characterize the gene expression profiles of human hosts infected by SARS-CoV-2 are of significant relevance. However, not many such experiments have yet been produced to date, nor made publicly available online. Thus, it is of paramount importance that data analysts explore all possibilities to integrate information coming from similar viruses and related diseases; interestingly, microarray gene profile experiments become extremely valuable for this purpose. This chapter reviews the aspects that should be considered when integrating transcriptomics data, considering mainly samples infected by different viruses and combining together various data types and also the extracted knowledge. It describes a series of scenarios from studies performed in literature and it suggests possible other directions of noteworthy integration.
2022
Microarray Data Analysis
978-1-0716-1838-7
978-1-0716-1839-4
COVID-19
Data integration
Gene expression
Genomics
Microarray experiments
Viral infection
File in questo prodotto:
File Dimensione Formato  
Directions_for_integrating_microarray_gene_expression_profiles_in_COVID_19_related_studies.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 209.32 kB
Formato Adobe PDF
209.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1192506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact