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Abstract The COVID-19 pandemic has hit heavily many aspects of our lives. At this

time, genomic research is concerned with exploiting available datasets and knowl-

edge to fuel discovery on this novel disease. Studies that can precisely characterize

the gene expression profiles of human hosts infected by SARS-CoV-2 are of signifi-

cant relevance. However, not many such experiments have yet been produced to date,

nor made publicly available online. Thus, it is of paramount importance that data

analysts explore all possibilities to integrate information coming from similar viruses

and related diseases; interestingly, microarray gene profile experiments become ex-

tremely valuable for this purpose. This chapter reviews the aspects that should be

considered when integrating transcriptomics data, considering mainly samples in-

fected by different viruses and combining together various data types and also the

extracted knowledge. It describes a series of scenarios from studies performed in

literature and it suggests possible other directions of noteworthy integration.

Keywords. COVID-19; Microarray experiments; gene expression; viral infection;

data integration; genomics.
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1 Introduction

The coronavirus emerged at the end of 2019 has caused many outbreaks at global

level and profound societal disruption. Importantly, the COVID-19 disease, which is

caused by the SARS-CoV-2 virus, exhibits infection characteristics that have been

only partially understood. As they resemble SARS-like complications, it has been

argued that comparative analysis of genomic and transcriptomic data from similar

viruses can lead to valuable insights [1].

This review chapter addresses data analysts who are familiar withmicroarray gene

expression datasets. Due to the unavailability of many new experiments specifically

targeting tissues/cell lines infected by the new virus, microarray datasets related to

other (genetically close) viruses’ infections – available from public databases and

validated by well-recognized literature – can be re-purposed for the objective of

investigating the novel COVID-19.

We thus propose a series of guidelines that can be used by data analysts to infer

knowledge on COVID-19 gene expression profiles by performing integrative studies,

i.e., using jointly data and results from microarray and next-generation sequencing

(NGS) experiments concerning SARS-CoV-2, similar viruses (i.e., meta-analysis),

and/or associated diseases. The presented typical scenarios include experiments

based on expression data of human hosts. Our base assumption is that microarray

platforms have been used more widely in the past, while recently NGS approaches

are strongly preferred. Accordingly, microarray technologies have been adopted for

performing experiments focused on infections caused by previous viruses that are

considered genetically close to SARS-CoV-2. Such studies can be conveniently

employed for integration with studies specifically concerned with SARS-CoV-2

infections, to derive enriched resulting knowledge.
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The possibility of integrating datasets on infected host genetics profiles with

datasets that analyze the viral genomics is not discussed in this chapter. Indeed, from

the perspective of a data analyst who can only access publicly available data, such

advanced integration is still not practically feasible; to the best of our knowledge,

no human COVID-19 gene expression dataset (on Gene Expression Omnibus [2],

ArrayExpress [3], or similar repositories) has yet been linked to the viral sequences

responsible for the infection. We refer the interested reader to [4] for a discussion on

this topic. Data integration efforts regarding sequences of SARS-CoV-2 have been

produced [5], but so far viral sequences and human profiles are kept separate [6, 7].

The chapter is organized as follows. In Section 2 we provide an overview of the

differences between gene expression profile experiments performed with microar-

ray technology [8] and next-generation sequencing technology [9], also known as

high-throughput sequencing. Then, Section 3 discusses why data and knowledge

derived from infections caused by viruses similar to SARS-CoV-2 or from other

associated diseases associated could be transferred to COVID-19-related studies.

Section 4 describes common procedures to acquire datasets of public data to con-

veniently analyze the domain at hand. Section 5 overviews the integration activities

from two perspectives, i.e., the data one and the knowledge one, outlining several

possible levels and instantiating them on example studies from literature. Section 6

explains our general view of COVID-19 integrative studies, decomposing them in

materials, methods and results blocks; seven different scenarios, existing in literature

or proposed for future applications are hence presented. Finally, Section 7 concludes

the chapter.
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2 Microarray and Next-Generation Sequencing technologies for

human host expression profiling

Many transcriptomics platforms are commonly used to generate expression data of

human tissues or cell lines affected by viral infections, such as those of our interest:

yet, to date, the two main technological options are represented by microarrays and

by NGS methods.

Microarrays are platforms that can host thousands of DNA fragments, called

probes, orderly and firmly arranged in well-known locations on a solid holder, as to

identify each gene of interest. A hybridization process occurs when these probes are

placed in presence of the complementary ones, which are obtained from messenger-

RNA (mRNA) of the sample(s) under exam and marked with fluorochrome. In

case of strong binding interactions of complementary strands, corresponding gene

activity can be evaluated by measuring local fluorescence intensity: the amount of

fluorescent signal arising from a given position is indeed directly proportional to the

amount of the corresponding gene transcript.

Microarrays are first characterized by the number of samples hybridizedwithin the

same experiment: a single-channel array provides gene expression estimates of one

sample at a time, while a dual-channel (or two-color) microarray is meant to quantify

the expression levels from competitive hybridization of two samples, representing

two biological conditions under analysis. In both cases, microarray technologies are

intrinsically designed to provide a relative quantification measure, due to the relative

intensity of each fluorescent dye during the hybridization process. Therefore, despite

their differences, both types of microarray are primarily used in comparative settings

(e.g., to compare an infected sample with a mock control): reliable values of relative

expression (called gene expression ratio) are commonly obtained evaluating two

alternative conditions either on the same dual-channel array or on two single-channel
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ones. Accordingly, microarray experiments often aim at identifying differentially

expressed genes (DEGs), i.e., genes experiencing statistically significant changes

in their expression levels between the two biological conditions, usually assessed

across a population of such alternative cases.

Another dichotomy within microarray technology concerns the probe generation

method: spotted microarrays are two-color arrays having probes of 1-2 kilo bases

length obtained using cDNA-libraries; oligo-chips are instead arrays synthesized in

situ and typically includingmultiple oligonucleotide probes of fixed and short length.

Even if the former can rely on hybridization on longer fragments and are globally

cheaper and more flexible, they can be affected by colorimetric problems as well

as possible differences in the amounts of deposited probes and of mRNA coming

from the two samples: this makes it more difficult to compare results obtained from

different arrays. Conversely, oligo-chips can assess a higher number of genes while

showing less variability between one chip and another. Though this improves the

comparability of the results obtained from different arrays, it limits the investigation

to sets of more generic predetermined sequences.

All microarrays inspect a set of previously identified target genes to provide their

expression levels;more recent and complete arrays support analysiswithin the overall

known transcriptome with fast profiling of coding and non-coding genes, exons, and

transcript isoforms, i.e., all possible known RNA sequences for a gene. Nonetheless,

shortcomings and issues with microarrays include the need to know a priori the

sequences to be investigated, cross-hybridization artifacts, poor quantification of

lowly and highly expressed genes as well as complexity of the required normalization

pipelines [10]. Due to these technical limitations and the progressively decreasing

cost of NGS experiments, transcriptomics is transitioning mostly to sequencing-

based methods.
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NGS technologies provide useful information on the sequences in addition to

more accurate estimations of corresponding gene expression levels; particularly,

RNA-Sequencing (RNA-Seq) [11] is a high-throughput NGS technology that has

undoubtedly become the most popular method for transcriptome analysis. Briefly,

RNA-Seq works by sequencing every RNA molecule and profiling the expression of

a given gene by counting the number of times its transcripts have been sequenced.

Beyond being able to offer a qualitative and quantitative screening of multiple types

of RNA in biological samples, RNA-Seq profiling has allowed to identify thousands

of novel isoforms and show the complexity of protein-coding transcriptome [12],

in a much wider way than before. Additionally, for the discovery of differentially

expressed genes, whole-transcriptome sequencing grants the interrogation of any

gene in the sample, with a wide dynamic range, allowing also DEG analysis of

low-expressing genes.

Although microarrays show some weaknesses compared with NGS technologies

(e.g., they can only investigate known sequences), they have been largely employed

and their protocols have been enhanced in the last two decades; also, robust statis-

tical methods exist to comprehensively analyse them. Thus, microarrays have left

researchers with a wide and rich legacy of data and analyses that can be leveraged

to improve future studies focused on gene expression, even if primarily based on

sequencing methods. At the same time, huge amounts of NGS data are being pro-

gressively collected due to the decreasing cost of sequencing experiments. These are

particularly valuable to study viral infections, where host samples can be sequenced

and aligned to the human genome as well as to viral genomes; this allows indeed

to investigate virus integration in host genomes and perform comparative analyses

of viral transcripts and host gene responses [13]. Hence, it is essential to exploit

the benefits of integrating data and knowledge available from these transcriptomics

technologies in relevant scopes such as the investigation of the novel COVID-19
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infectious disease: when taking care of all the aspects involved in their mutual

integration [14], their joint use becomes a precious resource for ongoing researches.

3 COVID-19 and its responsible virus

SARS-CoV-2 is the seventh coronavirus known as a human infection driver. The

first reports of the disease associated to this virus, the novel pneumonia denominated

COVID-19, were sent in Wuhan, Hubei province, China, at the end of 2019. In

the following we discuss the possibility of using experiments regarding infections

caused by different viruses or other diseases.

3.1 Knowledge transfer from other viruses’ infections to SARS-CoV-2

ones

SARS-CoV-2 is an enveloped, positive sense, single stranded RNA virus. Even if

hypotheses on laboratory origins of the virus have been raised, there have been proofs

of its proximal origin [15], backed by comparative analysis of genomic data with

similar viruses. Based on phylogenetic analyses [1], SARS-CoV-2 emerged as genet-

ically close to SARS-CoV (or SARS-CoV-1) – responsible for the SARS pandemic

of started in China in 2003. Both SARS-CoV-2 and SARS-CoV share a common

ancestral origin with MERS-CoV – causing the MERS Saudi Arabia outbreak in

2012. These three viruses show high percentages of sequence similarity [16], which

has been accordingly exploited also for vaccine design [17]. While a core feature as

the polybasic cleavage site at the junction of S1 and S2 in the Spike protein was not

previously observed in other beta coronaviruses (as claimed in [15]) many specific

similarities at the level of the sequence are proven. These are, for example, in the
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Receptor Binding Domain (RBD) [18], in the codon usage of RNA-dependent RNA

polymerase (RdRp) and Main protease (Mpro) genes [19] (these are key proteins in

the virus’ life cycle), as well as at the level of viral growth and of gene expression

patterns [20].

Note that the idea of comparing gene expression profiles in case of infections

by different but similar viruses is not new; for example, Bosworth et al. [21] had

proposed to relate human respiratory syncytial virus (HRSV) profiles with Ebola

virus ones, based on their similar genome organisation and replication strategy.

Overall, the potentiality of integrating datasets from different viruses is exploited

in so-called meta-analysis studies: these kinds of studies are crucial to face a new

viral infectious disease, especially for assessing the comparability of gene responses

and for the applications of drug repurposing, which is the identification of new

opportunities to reuse already existing safe drugs.

In addition, comparative studies and meta-analyses may also include other

pathogenic viruses that primarily attack the respiratory system and may cause death.

For brevity, in the following discussion, among these viruses, we only consider the

influenza A virus (IAV), which was responsible for several popular pandemics, such

as the Spanish influenza in 1918 and the Avian influenza in 2009. In literature this

virus has been compared to SARS-CoV-2 in terms of excess years of life lost. Indeed,

the mean age (∼80 years) of COVID-19 fatalities is considered similar to the 1957

and 1968 influenza pandemics [22]. Note that other comparisons, especially with

other coronaviruses, may be meaningful [23].

Datasets and studies available for these different viruses become particularly use-

ful when considering the current scarcity of expression profiling experiments on

patients/cell lines infected by SARS-CoV-2, especially with microarray technolo-

gies [1]. In this way, it is possible to maximize the use of previously available
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expression data while not many experiments have been performed (or have not been

made public) for COVID-19.

3.2 Knowledge transfer from related diseases to COVID-19

Another perspective for improving the current knowledge about a new viral infectious

disease such as COVID-19 is to enrich the gene-level analyses with data and insights

coming from linked diseases; such related diseases can emerge from the diseasome,

a complete conceptual model of human diseases, including also their responsible or

involved genes as well as the ways in which these genes are expressed [24, 25].

Expression profiling has indeed become a powerful and increasingly affordable

way to provide quantitative estimates of gene level activity. It is crucial to exam-

ine, explore and stratify different diseases. Particularly, a deeper knowledge of the

genes underlying a disease has made it possible – when a given gene appears signif-

icantly dysregulated/mutated in the associated disease – to represent and explore the

diseasome as a bipartite graph, consisting of disease nodes connected to gene nodes.

The links at the transcriptional level can also highlight another model of relevant

associations, i.e., the network of homogeneous disease-disease interactions obtained

through the connection of pairs of diseases that share the same genes in gene-

disease links. Additionally, in a homogeneous disease network, further disease-

disease interactions can reflect proved similarities and relationships between diseases

at phenotypic level (e.g., comorbidities, side-effects, ...) [25]. Accordingly, within the

scope of the integrative studies presented in this work, different kind of similarities

between diseases are exploited in two types of relevant contexts, discussed as follows.

On the one hand, an integrative study can compensate for the often-limited gene

expression data of infected hosts with additional gene expression profiles of patients

affected by diseases that are commonly recognized as complications of the viral
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infectious disease of interest [1]. This kind of data integration implies a knowledge

transfer, based on the assumption that causally related diseases are linked through

disease-disease associations that may, in turn, hide similar underlying genes at the

transcriptional level. Therefore, causal relationships involving the infectious disease

of interest and some of its complications are worth investigating with comparative

analyses, which can be directly applied to genes emerged as differentially expressed

in such diverse but associated diseases.

On the other hand, a work focused on an infectious disease can be enhanced

through knowledge about protein-drug-disease associations, where proteins of in-

terest usually come from dysregulated genes, often examined also with enrichment

analyses. This kind of knowledge integration can lead to study homogeneous disease

network [1] or heterogeneous networks such as protein-drug interaction networks

[26, 1]. In both cases, the so-obtained associations are rooted in the genes emerged

as significantly involved in the hosts’ infection onset/progression; they are also able

to guide the search of potential therapeutic targets as well as the use of computa-

tional methods for drug-repurposing (e.g., [27, 28, 29]), based on the assumption

that similar diseases can be treated with similar drugs [28].

4 Data acquisition

From the point of view of a data analyst, the well-known Gene Expres-

sion Omnibus [2] is the most common resource to access publicly avail-

able datasets for integrative studies on COVID-19. On GEO DataSets page

(https://www.ncbi.nlm.nih.gov/gds), a user can perform various search sessions,

e.g., using the query ("Homo sapiens"[Organism] AND ("gse"[Filter] AND

"Expression profiling by array"[Filter])) AND "Sars"[Title].

Similar ones can be designed by using strings for matching titles, e.g., re-
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garding "mers" or "coronavirus". Alternatively, users may employ the Browser

endpoint, looking for Series; to date (February 8th, 2021) the API request

https://www.ncbi.nlm.nih.gov/geo/browse/?view=series&search=sars allows to

retrieve 158 results, which are reduced to 11 when the filters on homo sapiens

organism and microarray series type are applied.

Other recommended sources for finding relevant datasets include ArrayEx-

press [3], the Genomic Expression Archive maintained by the DNA DataBank of

Japan [30], and All Of gene Expression [31], an integrator of publicly available gene

expression data. As metadata are often not structured, especially the ones regarding

the characteristics of analyzed samples, semi-automated methods of metadata ex-

traction may be needed for achieving more tailored search processes (see, e.g., [32]

for a proposal to extract information from GEO Samples descriptions, or [33] for a

structured instance of metadata).

[Table 1 near here]

A number of very recent papers [34, 1, 26, 35, 36] provide a set of relevant

GEO Series with microarray data of interest in this chapter. In Table 1, we report

a list of such datasets, plus additional ones; these are all produced with microar-

ray technology, which refer to human gene expression analysis on tissues or cell

lines infected by the most interesting viruses for our purpose (i.e., SARS-CoV-2,

SARS-CoV, MERS-CoV, and Influenza A). Almost all these datasets are used in the

five mentioned studies, which are thoroughly explained in Section 6, while a few

others have been retrieved performing classical search sessions on GEO. The last

three listed datasets involve tissues with diseases that are not viral, i.e., pneumonia

(PNA), shortness of breath (SHOB), and diarrhea (DRA), commonly regarded as

COVID-19 complications. Note that here we do not report relevant SARS-CoV-2

experiments used in the five studies when they are performed with NGS technology

(i.e., GSE147507 and GSE162835).
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For each experiment fromGEO, we report the Series ID, the virus/disease causing

the infection event, the type of analyzed samples (either extracted from human

individuals or from cell lines), the number of infected vs. control (healthy) samples;

the name of the employed platform; the number of genes profiled in the array; the

year of first public appearance of the Series on GEO; and the PubMed ID of the

linked academic publication.

5 Integration levels

Focusing on the scope presented in the preliminaries, we observe that, both method-

ologies already adopted in COVID-19-related studies (recently published in liter-

ature) and other data investigation techniques (that could be soon applied in the

context of ongoing research), require one or more integration levels. It seems ap-

propriate to categorize these as data integration and knowledge integration. Both

levels of integration are, in turn, characterized by a plethora of possible cases: data

integration captures the situations in which different kinds of data – experimental

transcriptional data (especially from different technologies), experimental metadata,

database annotations and/or associations – must be considered together as the main

actors of one or more analytical steps. Conversely, knowledge integration concerns

the problem of combining and exploiting together pre-existing knowledge and in-

formation that has been derived by previous steps of analysis, may it regard a set of

differentially expressed genes, interesting pathways, or drug targets.

In the following, we report the most common cases of data integration and

knowledge integration observed in several COVID-19-related studies. These levels

were first identified in the five integrative studies [34, 36, 1, 26, 35] on which this

chapter is focused, as deemed particularly explanatory of our scope of interest;

relevant details are provided in Table 2.
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Data integration levels include:

D1: Microarray experiments from viruses that are different from SARS-CoV-2,

integrated with RNA-Seq complete gene profiles of infected patients.

D1b: Partial microarray experiments (on selected genes) from viruses that are dif-

ferent from SARS-CoV-2, integrated with RNA-Seq complete gene profiles of

infected patients. Note that this level is separated from D1, as partial microar-

rays impose an additional constraint to integrative studies that already deal with

different viruses and aggregate NGS with microarray technologies.

D2: Microarray experiments from viruses that are different from SARS-CoV-2,

integratedwithmicroarray experiments on patients with diseases that are typically

considered as comorbidities or complications of COVID-19.

D3:Microarray experiments from SARS-CoV-2, integrated with RNA-Seq complete

gene profiles of infected patients.

Knowledge integration levels include:

K1: Meta-analysis of different viruses, extracting differentially expressed genes (sets

intersections and differences, possibly based on the up/down regulation). This

can be done among SARS-CoV-2 and its similar viruses or only among similar

viruses.

K2: Integration of gene/proteins dysregulated and/or involved in processes/pathways

enriched in diseases that are associated to COVID-19, e.g., its common compli-

cations.

K3: Identification of potential therapeutic targets and/or drugs through the integration

of relevant gene/proteins (selected via network or gene set enrichment analyses)

with i) external data banks for drugs/chemical agents, ii) external ontologies (the

Coronavirus Infectious Disease Ontology [37] can define relations between drugs

and roles or mechanisms of action).
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K4: Identification of gene signatures related to the expected prognosis through the

integration of predictive models able to provide clinically relevant predictions,

e.g., survival models.

The described levels of integration are interlinked in many analytical steps that

intrinsically involve data integration and knowledge integration together. In turn, a

given level could be addressedmultiple times in the same study. For instance, consider

the data integration effort that is needed to aggregate experimental data of infectious

diseases caused by similar viruses: such experimental data are commonly derived

from different platforms and transcriptomics technologies. COVID-19 datasets are

being progressively produced using the more widespread NGS technologies; on the

contrary, other data of interest – such as the one from comparable infectious diseases

(e.g., MERS, SARS, Type A influenza) – are mainly obtained with microarrays, as

they were generated prior to the revolution and spread of NGS technologies in the

last five years.

[Table 2 near here]

Table 2 reports an overview of integrative studies existing in literature, aiming

to derive knowledge on COVID-19. For each of them we specify the first author of

the publication, the publication (studies are listed in chronological order), the list

of employed datasets – divided by technology group, either NGS or microarray –

and the used integration levels identified by the data (D) and knowledge (K) points

listed previously in this section. When appropriate, we specified the objects of such

integration. For example, Loganathan et al. [36] performs knowledge integration

between SARS-CoV-2 information with other similar viruses (K1); Nain et al. [1]

integrates datasets from diseases typically recognized as COVID-19 complications

(D2) and performs a knowledge-level integration of genes involved in processes

of such diseases and of SARS infection (K2); Moni et al. [26] integrate knowledge

acquired from a lung-related disease – using SARS-CoV-2 infection response genes –



Integration of microarray expression data in COVID-19 studies 15

to perform survival analysis on lung adenocarcinoma patients (K4). Note that we did

not find relevant works including theD3 level or theK4 level (with a predictivemodel

applied directly on COVID-19 patients); however these are crucial contributions that

future works should address (as suggested in Section 6).

6 Integrative studies: possible scenarios

The integrative studies proposed in this chapter can be described comprehensively

by considering a set of different materials to be integrated at the data level, then

processed using methods allowing to derive information that can be integrated at the

knowledge level, with the final purpose of achieving results that are meaningful for

COVID-19 research.

The specific framework is described in Figure 1. On the left we outline a set of

materials, focused on gene expression; the use of datasets from different viruses

and COVID-19 related diseases is usually supported by, respectively, a phylogenetic

analysis and a diseasome analysis. The datasets are input into a collection of methods

that include the differentially expressed genes (DEG) analysis, the gene set enrich-

ment analysis (GSEA), as well as survival analysis or classification with feature

importance analysis. In addition, many network analyses (NA) can be performed by

building node-relationship models of co-expressed genes, of genes associated with

diseases or with regulatory biomarkers, and of protein interactions with proteins and

with drugs. The application of these methods leads to the achievement of a series

of important results such as the identification of relevant genes, of targets for novel

therapies and of drugs that may be repurposed from other uses. Machine learning

goals in this scope are focused on prediction of different classes (e.g., classes of

infectious disease severity) and their comparison; for data analysts, computational

methods for classification and feature importance analysis are indeed valid data-
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driven alternatives to more biologically oriented ways of selecting valuable gene

signatures.

[Figure 1 near here]

Fig. 1 Materials, methods and results modules typical of gene expression-based integrative studies
for COVID-19 knowledge discovery. Note that the ‘classification’ method and the ‘class prediction’
result are rendered in yellow as they are tightly linked to each other, co-existing in the scenarios
that include them. Instead, all the other modules can be combined and repeated in different orders.

The different types of data and the possible analyses that involve them open

up a series of scenarios where knowledge, either already available or acquired

through the workflow, is integrated with such data to progressively generate new

knowledge about COVID-19. Figure 1 reports a general view for understanding

the single scenarios reported in the following; other analytical workflows could be

designed in addition.We do not aim at covering all the possible examples of analytical

workflows; instead, we provide illustrative scenarios to show how analysts can make

use of already available transcriptional data (primarily frommicroarrays) to improve

studies and current knowledge about COVID-19.

Our scenarios are mostly focused on integrative studies from already published

COVID-19-related works; we summarize their workflows in Figure 2, while a dis-

cussion of each of them is provided below. Specifically, the first five retrace the

previously mentioned integrative studies described in [34, 36, 1, 26, 35]. Despite

using different analytical strategies, these studies target similar results for: extraction

of relevant genes, drug repurposing, and therapeutic targets identification.

In addition, we propose two novel scenarios, as study options for data analysts:

soon, both of them will become completely feasible thanks to the increasing number

of data that is being progressively collected, as a consequence of the global COVID-

19 pandemic.

[Figure 2 near here]
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Fig. 2 Seven scenarios of integrative studies: five extracted from literature [36, 1, 26, 35, 34] and
two proposed as prompts for future studies. Note that the acronym NA stands for Network Analysis.

As we can see from Figure 2, each of the seven scenarios includes from two

up to fifteen different gene expression datasets: these expression data come mainly

from microarrays of patients and/or cell lines infected some years ago with viruses

different from SARS-CoV-2. Conversely, among the few exceptions, we find several

RNA-Seq datasets of SARS-CoV-2 infection, already available on GEO repository

(GSE156544, GSE162835, GSE147507), which clearly reflect the recent transition

of transcriptomics to sequencing-based methods.

Scenario 1 [36]. This meta-analysis integrates 13 different datasets of SARS-CoV,

MERS-CoV, and SARS-CoV-2. Data come mostly from microarrays except for

one RNA-Seq dataset of MERS-CoV and one of SARS-CoV-2. Loganathan et al.

present a workflow aiming to propose candidate repurposable drugs against COVID-

19. Specifically, DEG analysis is applied separately on SARS-CoV-2 and together on

SARS-CoV and MERS-CoV data. Notice that, when not differently specified, DEG

analysis compares infected/diseased samples versus mock controls and an adjusted

P-value threshold is used to identify the significantly DEGs. Selected differentially

expressed genes are then used to build a protein interaction network while GSEA is

applied to trace significantly annotated pathways and Gene Ontology (GO) terms.

Eventually, protein-drug associations are extracted for potential therapeutic targets

from DrugBank (http://www.drugbank.ca/) and used in a computational method of

drug repurposing.

Scenario 2 [34]. This scenario includes the highest number of datasets (15), of which

almost one-third have data of SARS-CoV-2. Further, ten IAV and one SARS-CoV

microarray expression datasets are integrated into the meta-analysis. Gardinassi et

al. use DEG analysis and GSEA to assess COVID-19 samples and then to com-
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pare them with cases infected with SARS-CoV-1 or IAV. In this way, they trace

a core transcriptional signature that is comparable between infections caused by

SARS-CoV-2, SARS-CoV, and IAV, and is enriched in cell-cycle and proliferation.

Additionally, for SARS-CoV-2, they find multiple relevant immune and metabolic

signatures. These, together with the core signature, could be used in future studies

for a feature selection step prior to the classification of COVID-19 cases into valu-

able clinical classes (e.g., severity classes) or before tracing relevant clusters (i.e.,

groups of samples characterized by even non-trivial relationships of similarity at the

transcriptional level).

Scenario 3 [1]. This scenario is analytically complex. In their integrative study,

Nain et al. collect and compare gene expression data of the viral infection that is

phylogenetically closest to COVID-19, i.e., SARS-CoV, and of three diseases that

are identified as COVID-19 complications (i.e., pneumonia, severe acute respiratory

syndrome, and shortness of breath and diarrhea).With such richmeta-analysis frame-

work they can compensate for the lack of samples infected with SARS-CoV-2. A

cross-comparative analysis of DEGs found in SARS-CoV and in each complication’s

dataset is performed. Using significantly dysregulated genes during a SARS-CoV

infection, a gene-disease associations network is built and explored to obtain fur-

ther useful disease-disease links; enrichment analysis of signaling pathways is then

used to shed light on the molecular mechanisms underlying such disease-disease

interactions. Starting from the shared DEGs, instead, the study uncovers their rela-

tionships with regulatory biomarkers (transcription factors andmicroRNAs). Finally,

a protein interaction network is built to find highly connected (hub) genes as poten-

tial biomarkers or therapeutic targets for COVID-19, while a protein-drug/chemical

agents network is built to retrieve therapeutic options worthy of further investigation.

Scenario 4 [35]. This scenario is a meta-analysis completely focused on SARS-

CoV microarray data to extract relevant genes and potential therapeutic targets for
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COVID-19. Particularly, Ramesh et al. aim to provide a deep understanding of the

mechanisms behind the immune dysregulation and the cytokine storm development

of the severe cases, which are phenomena shared between COVID-19 and the SARS

infectious disease. DEG analysis – together with a protein interaction network – are

used to identify the hub genes: among them, GSEA based on GO annotations allows

to find two genes which could induce higher levels of pro-inflammatory cytokines

in the lungs and could be potential therapeutic targets to avoid cytokine storm.

Scenario 5 [26]. In a meta-analysis context, this scenario integrates four expression

datasets: two are of RNA-Seq (one for SARS-CoV-2 and one for IAV) and two

are of microarray (for SARS-CoV and MERS-CoV). Even if authors confirm that

SARS-CoV species is the phylogenetically closest one to SARS-CoV-2, each dataset

is used separately for DEG analyses. Most significantly dysregulated genes are

examined with GSEA of pathways and GO terms, finding enriched inflammatory

and infection responses to SARS-CoV-2 infection. Additionally, to confirm that

there are noteworthy disease associations of the genes involved in the SARS-CoV-2

infection response, Moni et al. use them to perform a survival analysis (including a

Cox regression model and Kaplan Meyer survival curves) in a different – but also

lung-related disease – context. This is the case of expression data of lung cancer (LC)

adenocarcinoma patients. SARS-CoV-2 infection response genes succeed to stratify

LC patients according to prognosis: differential expressions of the responding genes

appear associatedwith significantly reduced survival, supporting the notion of giving

critical care to classes of patients with lung-related co-morbidities, such as the LC

patients.

Scenario 6. We propose to perform a meta-analysis where SARS-CoV and MERS-

CoV microarray data of cell lines are integrated with already available RNA-Seq

andmicroarray datasets for SARS-CoV-2 with primary goals of therapeutic targeting

and drug repurposing. After DEG analysis for each infectious disease dataset alone,
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we compare and merge (e.g., intersection) the most significantly dysregulated genes.

A gene co-expression network can also be built on SARS-CoV-2 expression data

and used to identify all the co-expressed genes (above a given similarity threshold)

starting from the significant DEGs. The genes obtained in this way are likely to be

involved in the same biological processes and may be useful in providing a broader

view of the mechanisms underlying the infectious disease. Hence, we suppose to use

these genes as features for a basic classifier, which is meant to recognize infected

samples from mock samples, regardless of the virus. From feature importance anal-

ysis, which ranks the features/genes according to their role in the classification task,

we can then extract the most characterising infectious state and use them for further

GSEA of pathways and GO terms. The most interesting ones can be thus analysed

building a gene-disease and a protein-drug/chemical agent interaction network, so

as to find possible therapeutic targets as well as potential drugs to be repurposed.

Scenario 7. The main focus of this last proposed scenario is to develop a classifier

able to distinguish COVID-19 severity classes and provide accordingly a more

tailored drug repurposing. In a meta-analysis setting, we collect MERS-CoV, SARS-

CoV and IAV microarray expression data of patients, featuring some annotations

about severity. Then, we integrate them with an RNA-Seq dataset of SARS-CoV2

(GSE162835) that, to the best of our knowledge, is the only one already available

having also metadata of disease severity [38]. We conduct the usual DEG analysis

on each infectious disease separately; we repeat DEG analyses of each pairwise

comparison among the three classes of COVID-19 severity (severe, moderate and

mild). Using the most significant DEGs as features we can train a classifier to

recognize only severe cases or, possibly, all the three classes of severity: training

data may include patients infected by SARS-CoV-2 or the other viruses, but testing

data should be COVID-19 cases, in order to assess the reliability of classification

for this specific infectious disease. Also, the samples infected with other viruses can
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be used always together with a label indicating their severity annotations, or even

without any label, if they are not available. In the former case, we have a completely

supervised setting, where the number of samples could be lower but each sample is

annotated to a severity class; in the latter case, a semi-supervised setting is chosen,

in which also samples without severity annotation contribute to acquire knowledge

about the input data, despite not contributing to learning the classification task. Once

the classifier is built, feature importance analysis extracts signatures consisting of

the most useful genes/features to distinguish each class of severity. These signatures

are examined with GSEA of pathways and GO terms. The most interesting genes,

which are the ones that allow to distinguish severe cases, are considered to build

gene-regulatory biomarkers and protein-drug/chemical agent interaction networks.

Potential therapeutic targets and repurposable drugs can be found as a consequence.

7 Conclusions

COVID-19 is a very complex disease, and its mechanisms are far from being com-

pletely understood. For this reason, it is important to exploit all the available re-

sources, including datasets produced with microarray technologies and referring to

viruses similar to SARS-CoV-2 or diseases related to COVID-19. Many integration

scenarios are feasible, as richly described in existing literature and overviewed in

this chapter. Accordingly, here we proposed possible future directions for integrative

studies on COVID-19, combining NGS and microarray datasets of SARS-CoV-2 but

also of other infections and diseases, including machine learning techniques that can

investigate in depth the hidden mechanisms of gene expression in human hosts in-

fected by a virus. In increasingly complex scenarios, it is paramount that integration

efforts are devoted to both data and knowledge aspects, with the ideal goal of reusing

existing datasets and information (even if not collected ad-hoc for this research) to
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increase the amount of exploitable material and improve the variety and reliability

of methods useful to provide meaningful results in COVID-19 related studies.
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Table 1 A collection of datasets that can be suitably employed by data analysts to perform COVID-
19-related cross-species gene expression profiles analyses. Datasets are sorted by virus or disease;
#inf and #cont indicate respectively the number of infected and control samples used in the exper-
iment; almost all the listed platforms are used in their single channel mode (this information was
not available for all models); #genes indicates the number of unique genes represented in the plat-
form. For Agilent and Illumina models we retrieve the information from the Gemma database [39],
for Affymetrix from the documentation of the manufacturer. GSE5972 is an exception, as we
alternatively provide the number of cDNA clones from IMAGE.
GSE ID Virus/disease Sample type (cell line/patient) #inf #cont Platform #genes Year PubMed
GSE156544 SARS-CoV2 Primary epithelial organoids from colon 4 4 Agilent-026652 Whole Human Genome Microarray 4x44K v2 21278 2021 -

GSE30589 SARS-CoV Primate cells using human platform 24 9 Affymetrix Human Genome U133 Plus 2.0 Array 38,500 2011 22028656
GSE5972 SARS-CoV Patients 60 10 UHNMAC Homo sapiens 19K Hu19Kv8 19,200 2007 17537853
GSE1739 SARS-CoV Patients 10 4 Affymetrix Human HG-Focus Target Array 8,500 2005 15655079
GSE47963 SARS-CoV HAE cultures 89 102 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F 18498 2013 23935999
GSE33267 SARS-CoV 2B4 cells (clonal deriv. of Calu-3 cells) 33 33 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F 18498 2011 23365422
GSE17400 SARS-CoV 2B4 cells (clonal deriv. of Calu-3 cells) 9 9 Affymetrix Human Genome U133 Plus 2.0 Array 38,500 2010 20090954
GSE48142 SARS-CoV 2B4 cells (clonal deriv. of Calu-3 cells) 24 22 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F 18498 2014 -
GSE37827 SARS-CoV 2B4 cells (clonal deriv. of Calu-3 cells) 30 30 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F 18498 2012 -

GSE56677 MERS-CoV 2B4 cells (clonal deriv. of Calu-3 cells) 18 15 Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 21087 2014 25534508
GSE45042 MERS-CoV 2B4 cells (clonal deriv. of Calu-3 cells) 17 15 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F 18498 2013 23631916
GSE100496 MERS-CoV Human fibroblasts 25 25 Agilent-026652 Whole Human Genome Microarray 4x44K v2 21278 2017 -
GSE86528 MERS-CoV Human fibroblasts 25 25 Agilent-026652 Whole Human Genome Microarray 4x44K v2 21278 2016 -
GSE100509 MERS-CoV Human fibroblasts 25 25 Agilent-026652 Whole Human Genome Microarray 4x44K v2 21278 2017 -
GSE79172 MERS-CoV Human fibroblasts 15 14 Agilent-026652 Whole Human Genome Microarray 4x44K v2 21278 2016 -
GSE81909 MERS-CoV Human fibroblasts 25 25 Agilent-026652 Whole Human Genome Microarray 4x44K v2 21278 2016 -
GSE100504 MERS-CoV Primary human airway epithelial cells 5 5 Agilent-026652 Whole Human Genome Microarray 4x44K v2 21278 2017 -
GSE65574 MERS-CoV 2B4 cells (clonal deriv. of Calu-3 cells) 15 3 Agilent-026652 Whole Human Genome Microarray 4x44K v2 21278 2015 28830941

GSE34205 IAV Patients 28 12 Affymetrix Human Genome U133 Plus 2.0 Array 38,500 2012 22398282
GSE6269 IAV Patients 18 7 Affymetrix Human Genome U133A Array 14,500 2007 17105821
GSE20346 IAV Patients 19 18 Illumina HumanHT-12 V3.0 expression beadchip 16643 2011 21408152
GSE29366 IAV Patients 19 12 Illumina HumanWG-6 v3.0 expression beadchip 16643 2015 -
GSE40012 IAV Patients 39 18 Illumina HumanHT-12 V3.0 expression beadchip 16643 2012 22898401
GSE38900 IAV Patients 16 39 Illumina HumanWG-6 v3.0 expression beadchip 16643 2013 24265599
GSE52428 IAV Patients 41 0 Affymetrix Human Genome U133A 2.0 Array 14,500 2013 23326326
GSE61754 IAV Patients 66 22 Illumina HumanHT-12 V4.0 expression beadchip 18366 2014 25345603
GSE68310 IAV Patients 747 133 Illumina HumanHT-12 V4.0 expression beadchip 18366 2015 26070066
GSE90732 IAV Patients 86 22 Illumina HumanHT-12 V4.0 expression beadchip 18366 2017 28595644

GSE14841 DRA Patients 5 4 Affymetrix Human Genome U133 Plus 2.0 Array 38,500 2009 33244004
GSE103119 PNA Patients 152 20 Illumina HumanHT-12 V4.0 expression beadchip 18366 2017 30425971
GSE137268 SHOB Patients 54 15 Illumina humanRef-8 v2.0 bead chip 11950 2019 -
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Table 2 Example integrative studies described in recent papers, employing several datasets from
Table 1, Note that, among the microarray GSE IDs, GSE47962 was not previously inserted in
Table 1 as it is subseries of an already included series. In addition, here we include also NGS
experiments not previously mentioned.

Publication/date Datasets (by GEO Series ID) Integration levels
Loganathan et
al. [36]
10 June 2020

NGS: GSE147507, GSE122876
Microarray: GSE17400,
GSE45042, GSE47962,
GSE33267, GSE37827,
GSE100496, GSE86528,
GSE100509, GSE79172,
GSE81909, GSE48142

D1
K1 (SARS-CoV-2 + similar
viruses)
K3

Gardinassi et
al. [34]
26 June 2020

NGS: GSE147507
Microarray: GSE1739,
GSE34205, GSE6269,
GSE20346, GSE29366,
GSE40012, GSE38900,
GSE52428, GSE61754,
GSE68310, GSE90732

D1
D1b
K1 (SARS-CoV-2 + similar
viruses)
K3

Nain et al. [1]
11 August 2020

Microarray: GSE30589,
GSE103119, GSE14841,
GSE137268, GSE1739

D2 (SARS, DRA, PNA, SHOB)
K1 (only similar viruses)
K2 (SARS + other diseases)
K3

Ramesh et al. [35]
27 November 2020

Microarray: GSE33267,
GSE1739

K1 (only similar viruses)
K3

Moni et al. [26]
18 December 2020

NGS: GSE147507, GSE89008
Microarray: GSE47963,
GSE100504

D1
K1 (SARS-CoV-2 + similar
viruses)
K3
K4 (survival in lung adenocarci-
noma)


