The energy efficiency of Gasoline Direct Injection (GDI) engines is leading to a continuous increase in GDI engine vehicle population. Consequently, their particulate matter (soot) emissions are also becoming a matter of concern. As required for diesel engines, to meet the limits set by regulations, catalyzed particulate filters are considered as an effective solution through which soot could be trapped and burnt out. However, in contrast to diesel application, the regeneration of gasoline particulate filters (GPF) is critical, as it occurs with almost an absence of NOx and under oxygen deficiency. Therefore, in the recent years it was of scientific interest to develop efficient soot oxidation catalysts that fit such particular gasoline operating conditions. Among them ceria-and perovskite-based formulations are emerging as the most promising materials. This overview summarizes the very recent academic contributions focusing on soot oxidation materials for GDI, in order to point out the most promising directions in this research area.
Catalytic materials for gasoline particulate filters soot oxidation
R. Matarrese
2021-01-01
Abstract
The energy efficiency of Gasoline Direct Injection (GDI) engines is leading to a continuous increase in GDI engine vehicle population. Consequently, their particulate matter (soot) emissions are also becoming a matter of concern. As required for diesel engines, to meet the limits set by regulations, catalyzed particulate filters are considered as an effective solution through which soot could be trapped and burnt out. However, in contrast to diesel application, the regeneration of gasoline particulate filters (GPF) is critical, as it occurs with almost an absence of NOx and under oxygen deficiency. Therefore, in the recent years it was of scientific interest to develop efficient soot oxidation catalysts that fit such particular gasoline operating conditions. Among them ceria-and perovskite-based formulations are emerging as the most promising materials. This overview summarizes the very recent academic contributions focusing on soot oxidation materials for GDI, in order to point out the most promising directions in this research area.File | Dimensione | Formato | |
---|---|---|---|
Matarrese_Catalysts 2021, 11, 890.pdf
accesso aperto
:
Publisher’s version
Dimensione
3.38 MB
Formato
Adobe PDF
|
3.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.