We prove some injectivity results: that a Coxeter monoid Z-algebra (or 0-Hecke algebra) injects in the incidence Z-algebra of the corresponding Bruhat poset, for any Coxeter group; that the Hecke algebra of a right-angled Coxeter group injects in the Coxeter monoid Z[q, q- 1] -algebra (and then in the incidence Z[q, q- 1] -algebra of the corresponding Bruhat poset); that a right-angled Artin group injects in the group of invertible elements of the Hecke algebra of the corresponding Coxeter group (and then in the group of invertible elements of a Coxeter monoid algebra and in the one of an incidence algebra).
Artin group injection in the Hecke algebra for right-angled groups
Sentinelli P.
2021-01-01
Abstract
We prove some injectivity results: that a Coxeter monoid Z-algebra (or 0-Hecke algebra) injects in the incidence Z-algebra of the corresponding Bruhat poset, for any Coxeter group; that the Hecke algebra of a right-angled Coxeter group injects in the Coxeter monoid Z[q, q- 1] -algebra (and then in the incidence Z[q, q- 1] -algebra of the corresponding Bruhat poset); that a right-angled Artin group injects in the group of invertible elements of the Hecke algebra of the corresponding Coxeter group (and then in the group of invertible elements of a Coxeter monoid algebra and in the one of an incidence algebra).File | Dimensione | Formato | |
---|---|---|---|
Artin group injection in the Hecke algebra for right-angled groups.pdf
Accesso riservato
:
Publisher’s version
Dimensione
372 kB
Formato
Adobe PDF
|
372 kB | Adobe PDF | Visualizza/Apri |
11311-1190454_Sentinelli.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
263.58 kB
Formato
Adobe PDF
|
263.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.