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Abstract

We prove some injectivity results: that a Coxeter monoid Z-algebra (or
0-Hecke algebra) injects in the incidence Z-algebra of the corresponding
Bruhat poset, for any Coxeter group; that the Hecke algebra of a right-
angled Coxeter group injects in the Coxeter monoid Z[q, q−1]-algebra (and
then in the incidence Z[q, q−1]-algebra of the corresponding Bruhat poset);
that a right-angled Artin group injects in the group of invertible elements
of the Hecke algebra of the corresponding Coxeter group (and then in the
group of invertible elements of a Coxeter monoid algebra and in the one
of an incidence algebra).

1 Introduction

The HOMFLYPT-polynomials provide an important knot invariant; in the
celebrated article of Jones [27] they are defined by the Ocneanu’s trace on the
Hecke algebra of type An. The trace is computed on the image of an element of
the braid groupBn+1 under the representation given by the assignment σi 7→ Tsi ,
where {σ1, ..., σn} is the set of generators of Bn+1 and Tsi is a generator of
the Hecke algebra of the Coxeter system (Sn+1, {s1, ..., sn}) of type An, for all
1 6 i 6 n. Here Sn+1 denotes the symmetric group of order (n + 1)!. The
injectivity of this group morphism is an open problem (except in small cases).
The Burau representation, which is a representation of the Hecke algebra of
type An, solves this problem for n < 3 since in these cases the faithfulness (as a
representation of the braid group) is known. For n > 3 the Burau representation
is not faithful and the faithfulness for n = 3 is unknown (see, e.g., Turaev paper
[38]). It is worth to mention a paper by Brunat, Magaard and Marin [5] devoted
to the study of the image of this morphism in the finite field case. Clearly the
image is a finite group and then the morphism in not injective.

In general, the assignment of the generators of an Artin group to the respec-
tive generators of the Hecke algebra of a Coxeter system of same type, furnishes
a group morphism of the Artin group to the group of invertible elements of this
Hecke algebra. The injectivity of this morphism seems to be a natural problem.
In this article we prove that such a morphism is injective for the class of right-
angled Artin groups (sometimes known as graph groups). We refer to [7] and
[39] for a wide exposition of problems where such groups appear; the reader can
appreciate their relevance in topology and geometry.

The central argument of the proof of our results lies in the existence of
an integral faithful representation of the Coxeter monoid Z-algebra (0-Hecke
algebra) of any Coxeter system (W,S), made by idempotent functions which are
the projections P J : W → W J over a set W J of representative of the quotient
of the Coxeter group W by a parabolic subgroup WJ . In particular we use
the fact that, viewing these projections as endomorphisms of the free Z-module
generated by W , the endomorphisms Pw := P {s1}P {s2} · · ·P {sk} corresponding
to a reduced expression s1s2 · · · sk for w ∈ W depend only on the elements

1

http://arxiv.org/abs/1801.04233v5


of W and they are linearly independent. An important observation is that an
endomorphism Pw can be considered as an element of the incidence algebra of
the Bruhat poset of W . This results permit to prove, when RA is a right-angled
Artin group generated by {s1, ..., sn}, that the assignments si 7→ q Id−(q+1)P si

and si 7→ − Id+(q + 1)P si , for all i ∈ {1, 2, ..., n}, provide the stated injection
of RA in the Hecke algebra H(R), consequently in the Coxeter monoid algebra
over the ring Z[q, q−1] (see Theorems 5.2 and 5.5), and in the incidence algebra
of the Bruhat poset of R (Corollary 5.6).

Our results provide also a class of finite-dimensional representations of any
right-angled Artin group; in fact these groups act, via the 0-Hecke algebras in
which are embedded, on any lower Bruhat interval of the corresponding Coxeter
groups (see the end of Section 5).

In the finite case the representation theory of the 0-Hecke algebras was initi-
ated and extensively studied by Norton in [30]. A realization of these algebras
by projections over the parabolic quotients was already pointed out and inves-
tigated (see, e.g, [19] and [20]). Since we are interested in the infinite case, we
have developed the theory for arbitrary Coxeter systems.

The interest in the Coxeter monoids and, mostly, in the Coxeter monoid
algebra of finite monoids is evident looking at the wide literature. Besides the
cited one of P. N. Norton, general results can be found in [14] , [16], [17], [25],
[37]. In type A we can quote, among others, [6] and [11]. Various actions
of the 0-Hecke algebra of type A are constructed in [15], [18], [21], [22], [26],
[29], [36], with results related to quasisymmetric functions and noncommutative
symmetric functions. More general results in the setting of representation theory
of monoid algebras can be found, e.g., in [10] and [28].

The content of the paper is arranged in the following way. Section 2 is
devoted to establish notation and to recall known definitions and results used
in the ensuing sections. In Section 3 we show some properties of the projections
P J : W → W J ; in particular we prove that two projections commute when
acting on a finite Coxeter group if and only if they commute on the maximum
of the group. This result can be useful for computational purpose; in [32] it is
used to implement the non-commuting graph of the projections P J in type An;
this graph is conjectured to be n-universal [32, Conjecture 4.5].

The algebra M generated by the set of projections {P J : J ⊆ S} and an
integral representation of the Coxeter monoid algebra, obtained with the as-
signment s 7→ P {s} for all s ∈ S, are the subjects of Section 4. We see that
for finite Coxeter groups the algebra M is isomorphic to the Coxeter monoid
algebra; in the infinite case the second one is isomorphic to a proper subalgebra
of M . In fact, the Coxeter monoid algebra is realized as the algebra gener-
ated by the set of idempotents {P {s} : s ∈ S} (Theorem 4.4); moreover this
algebra injects in the incidence algebra of the poset (W,6), where 6 is the
Bruhat order (Corollary 4.5). Section 5 presents the main results of this article,
i.e. the injection of a right-angled Artin group RA in the Hecke algebra of the
Coxeter group of same type (Theorem 5.5), the injection of this Hecke algebra
in the Coxeter monoid Z[q, q−1]-algebra (Proposition 5.2), which injects in the
incidence Z[q, q−1]-algebra of the Bruhat poset (R,6) (Corollary 5.3). As a
consequence we obtain, for any element v of its corresponding right-angled Cox-
eter group R, a representation of the group RA over the field Q, of dimension
|{z ∈ R : z 6 v}| < ∞.
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2 Notations and preliminaries

In this section we establish some notation and we collect some basic results
from the theory of Coxeter systems, Coxeter monoids and Hecke algebras which
will be useful in the sequel. The reader can consult [3] and [23] for further
details. For the isomorphism problem of Coxeter systems we refer to [1]. We
follow [34, Chapter 3] for notation and terminology concerning posets and [13]
for graphs. For the general theory of ordered monoids and representations of
finite monoids the reader can consult [4] and [35] respectively.

We let Z be the ring of integers and Q the field of rational numbers. With
N we denote the set of non-negative integers. For any n ∈ N we let [n] :=
{ 1, 2, ..., n }; in particular [0] = ∅. With

⊎
we denote the disjoint union, with

|X | the cardinality of a set X and with P(X) its power set. Given any category,
End(O) and Aut(O) denote the set of endomorphisms and automorphisms of
an object O respectively. The category of posets is the one whose objects are
posets and whose morphisms are order preserving functions. Given a poset
(P,6), any pair (x, y) ∈ P × P satisfying x 6 y defines an interval [x, y] :=
{z ∈ P : x 6 z 6 y}. The set of intervals of (P,6) is denoted with Int(P ); the
poset is called locally finite if |[x, y]| < ∞ for all [x, y] ∈ Int(P ). The incidence

algebra I(P ;Z), over a ring Z, of a locally finite poset (P,6) is the Z-algebra
of functions1 f : Int(P ) → Z, whose product is defined by

(fg)(x, y) :=
∑

z∈[x,y]

f(x, z)g(z, y),

for all f, g ∈ I(P ;Z), [x, y] ∈ Int(P ). When P is finite, the incidence algebra is
isomorphic to a subalgebra of the algebra of upper triangular matrices with co-
efficients in the ring Z, where an isomorphism is given once any linear extension
of the poset is fixed (see [33] for further deepening on incidence algebras).

Let (W,S) be a Coxeter system. This is a presentation of the group W
given by a set S of involutive generators and relations encoded by a Coxeter

matrix m : S × S → {1, 2, ...,∞} or, equivalently, by a Coxeter graph (see
[3, Chapter 1]). A Coxeter matrix over S is a symmetric matrix which satisfies
the following conditions:

1. m(s, t) = 1 if and only if s = t;

2. m(s, t) ∈ {2, 3, ...,∞}, if s 6= t,

for all s, t ∈ S. The Coxeter graph associated to a Coxeter system (W,S) with
Coxeter matrix m, is a labeled graph whose vertices are the elements of S,
whose edges are given by the sets {s, t} such that m(s, t) > 2, displaying the
label m(s, t) whenever m(s, t) > 4, for all s, t ∈ S. The presentation (W,S) of
the group W is then the following:

{
generators : S;

relations : (st)m(s,t) = e,

for all s, t ∈ S, where e denotes the identity in W . The Coxeter matrix m
attains the value ∞ at (s, t) to indicate that there is no relation between the
generators s and t.

1We write f(x, y) for f([x, y]).
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The elements of the group W with the given Coxeter presentation can be
viewed as words in the alphabet S; the class of words expressing an element of
W contains words of minimal length; the length function ℓ : W → N assigns
to an element w ∈ W such a minimal length. The identity e is represented by
the empty word and then ℓ(e) = 0. A word of minimal length, expressing an
element w ∈ W , is called a reduced word or reduced expression for w. If J ⊆ S,
we let

W J := { w ∈ W : ℓ(ws) > ℓ(w) ∀ s ∈ J } ,
JW := { w ∈ W : ℓ(sw) > ℓ(w) ∀ s ∈ J } ,

DL(w) := { s ∈ S : ℓ(sw) < ℓ(w) } ,

DR(w) := { s ∈ S : ℓ(ws) < ℓ(w) } .

Let w ∈ W J . It is useful to recall that exactly one of the following three
possibilities occurs (see [12, Lemma 3.1]):

1. s ∈ DL(w). In this case sw ∈ W J .

2. s 6∈ DL(w) and sw ∈ W J .

3. s 6∈ DL(w) and sw 6∈ W J . In this case sw = ws′ for a unique s′ ∈ J .

By definition W I ∩W J = W I∪J and IW ∩ JW = I∪JW . In the literature, the
elements of the sets W J and JW are sometimes called reduced -J and J-reduced

respectively.
With WJ we denote the subgroup of W generated by J ⊆ S; such a group is

usually called a parabolic subgroup. In particular WS = W and W∅ = { e }. We
say that the set J is connected if the Coxeter graph of (WJ , J) is connected.

When the group WJ is finite, there exists a unique element w0(J) of maximal
length and DL(w0(J)) = DR(w0(J)) = J ([3, Proposition 2.3.1]). When J = S
we write w0 instead of w0(S).

Given a Coxeter presentation (W,S), we consider on W the Bruhat order 6
(see, e.g., [3, Chapter 2] or [23, Chapter 5]). Such an order can be defined in
the following way: let u, v ∈ W and s1s2 · · · sk be a reduced word for v ∈ W .
Then u 6 v if and only if a word expressing u can be obtained deleting some
generators in the reduced word s1s2 · · · sk.

We recall a characterizing property of the Bruhat order, known as lifting

property (see [3, Proposition 2.2.7 and Exercise 2.14]):

Proposition 2.1. Let v, w ∈ W such that v < w and s ∈ DR(w)\DR(v). Then

v 6 ws and vs 6 w.

For any J ⊆ S, each element w ∈ W factorizes uniquely as w = wJwJ , where
wJ ∈ W J and wJ ∈ WJ and ℓ(w) = ℓ(wJ ) + ℓ(wJ ) ([3, Proposition 2.4.4]). We
consider the idempotent function P J : W → W defined by

P J(w) = wJ ,

for all w ∈ W . This function is a morphism of posets ([3, Proposition 2.5.1]):

Proposition 2.2. Let v, w ∈ W be such that v 6 w; then vJ 6 wJ , for all

J ⊆ S.
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In a similar way one defines the projection QJ : W → JW by QJ(w) = Jw.
The analogues of the last two results hold for QJ . Summarizing, an element
w ∈ W has unique expressions

w = P J(w)PJ (w) = QJ(w)Q
J (w), (1)

where the maps PJ , QJ : W → WJ are defined in the obvious way. By (1)
follows that P J(w), PJ (w), Q

J (w), QJ (w) 6 w for all w ∈ W , J ⊆ S. So by
Proposition 2.2 the functions P J , PJ , QJ and QJ are regressive order preserving
functions for the poset (W,6) (see [10, Definition 2.7]).

The following result, and its right version, will be useful in the sequel.

Lemma 2.3. Let (W,S) be a Coxeter system and I ⊆ J ⊆ S. Then

1. P J ◦ P I = P J ;

2. PI ◦ PJ = PI .

Proof. Let w ∈ W . We have that w = wIwI = wJwJ = wJ (wJ )
I(wJ )I . Since

wJ (wJ )
I ∈ W I because s ∈ I implies (wJ )

I < (wJ )
Is ∈ WJ , we have that

wI = wJ (wJ )
I and wI = (wJ )I . From the equality wI = wJ (wJ )

I also follows
that (wI)J = wJ .

Remark 2.4. Analogous properties of the projections P J are satisfied also by
the parabolic map defined and studied in [2]. When the group WJ is finite a
function P \J : W → W can be defined by

P \J(w) = P J (w)w0(J),

for all w ∈ W . It is easy to see that P \J is idempotent and order preserving.
The idempotents P J together with the idempotents P \J generate the biHecke
monoid (see [20, Section 1], where these operators are respectively called bubble

sorting operators and bubble antisorting operators). In Section 4 we use the
idempotents P J to realize Coxeter monoid algebras, although a realization by
bubble antisorting operators is also possible.

Another property of the projections on W J and JW is that the right projec-
tions commute with the left ones (for a proof of this result see [31, Lemma 2.6]).

Lemma 2.5. Let I, J ⊆ S; then the projections P J and QI commute, i.e.

P J ◦QI = QI ◦ P J .

Given a Coxeter system (W,S) with Coxeter matrix m : S×S → {1, 2, ...,∞},
the corresponding Coxeter monoid WM is the monoid with identity e generated
by the set S, satisfying the following relations:







s2 = s;

(st)m(s,t)/2 = (ts)m(s,t)/2, if m(s, t) ≡ 0 (mod 2);
t(st)(m(s,t)−1)/2 = s(ts)(m(s,t)−1)/2, if m(s, t) ≡ 1 (mod 2),

for all s, t ∈ S. Note that as sets W = WM . The following definition establishes
the notion of ordered monoid.
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Definition 2.6. A poset (M,6) is an ordered monoid if M is a monoid and

x1 6 y1, x2 6 y2 implies x1x2 6 y1y2, for all x1, x2, y1, y2 ∈ M .

Although a Coxeter group W with the Bruhat order is not an ordered monoid,
the Coxeter monoid is ordered (see [25] for further results on Coxeter monoids
and, in particular, [25, Lemma 2]).

Proposition 2.7. The Coxeter monoid WM with the Bruhat order is an ordered

monoid.

Let A := Z[q−1, q] be the ring of Laurent polynomials in the indeterminate q.
For any Coxeter system (W,S), the Hecke algebra H(W,S) is the free A-module
with basis { Tw : w ∈ W } and product defined by

TwTs =

{

Tws, if s 6∈ DR(w),

qTws + (q − 1)Tw, otherwise,

for all w ∈ W and s ∈ S. For s ∈ S one can easily see that

T−1
s = (q−1 − 1)Te + q−1Ts

and then use this to invert all the elements Tw, where w ∈ W . On H(W,S)
there is an involution ι, as defined in [24], such that

ι(q) = q−1, ι(Tw) = T−1
w−1 ,

for all w ∈ W . Furthermore (see, e.g., [23]) this function is a ring automorphism,
i.e.

ι(TvTw) = ι(Tv)ι(Tw),

for all v, w ∈ W .

Definition 2.8. Given a Coxeter system (W,S), the Coxeter monoid algebra
Z[WM ] is the monoid algebra over the ring Z of the Coxeter monoid WM .

Remark 2.9. The 0-Hecke algebra is the specialization of H(W,S) at q = 0 and
it is isomorphic to the Coxeter monoid algebra Z[WM ], as one can see via the
isomorphism defined by Ts 7→ −s.

We end this section recalling some facts about right-angled Coxeter and
Artin groups. For further deepening on these groups and their relevance in
geometry and topology one can consult the books [9] and [39], and the paper
[7].

Definition 2.10. Let (W,S) be a Coxeter system with Coxeter matrix m :
S × S → {1, 2, ...,∞}. The system (W,S) is called right-angled if {∞} ⊆
{m(s, t) : s, t ∈ S} ⊆ {1, 2,∞}.

Given a Coxeter system (W,S) with Coxeter matrix m : S×S → {1, 2, ...,∞},
the Artin group WA of type (W,S) is the group given by the following presen-
tation:






generators : S;

relations :

{
(st)m(s,t)/2 = (ts)m(s,t)/2, if m(s, t) ≡ 0 (mod 2);

t(st)(m(s,t)−1)/2 = s(ts)(m(s,t)−1)/2, if m(s, t) ≡ 1 (mod 2).
.
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If (W,S) is right-angled then the Artin group WA is called right-angled. We
refer to [8, Section 4] for the following facts about right-angled Artin groups. Let
w ∈ RA be an element of a right-angled Artin group RA. Then w = se11 · · · sekk ,
for some s1, ..., sk ∈ S, e1, ..., ek ∈ Z. An element seii is called syllable of w. The
following moves can be applied to w:

1. remove a syllable seii if ei = 0;

2. if si = si+1 then replace seii s
ei+1

i+1 by s
ei+ei+1

i ;

3. if sisi+1 = si+1si then replace seii s
ei+1

i+1 with s
ei+1

i+1 s
ei
i .

We say that a word representing w ∈ RA is reduced if its number of syllables
is minimal. The following result holds (see [8, Theorem 4.1] and references
there):

Theorem 2.11. Any two words representing w ∈ RA can be connected via a

sequence of the moves above. In particular, if two words are reduced, they can

be connected via a sequence of moves of third type.

A Coxeter group W is said to be rigid if, given two Coxeter systems (W,S)
and (W,T ) there exists an element φ ∈ Aut(W ) such that φ(s) ∈ T for all s ∈ S.
If W is rigid, the Coxeter system (W,S) (and so the Bruhat order and the Hecke
algebra) is uniquely determined by the group W , modulo automorphisms of its
Coxeter graph. The following statement asserts the rigidity of a right-angled
Coxeter system (see [1, Theorem 3.1]).

Theorem 2.12. Let (W,S) be a right-angled Coxeter system. Then W is rigid.

By Theorem 2.12, in the right-angled case one can speak about the Bruhat
order of the group W and the Hecke algebra of the group W , without any
specification of its Coxeter presentation.

3 Some properties of the projections P
J

Given a Coxeter system (W,S) let VW be the free Z-module with basis the
set W . Any projection P I : W → W I extends to an idempotent endomorphism
P I ∈ End(VW ); in the sequel we will not distinguish between functions from W
to W and endomorphisms of VW .

Definition 3.1. Given a Coxeter system (W,S), we define the Z-algebra M(W,S)
as the subalgebra of End(VW ) generated by the set of idempotents {P I : I ⊆ S}.

By the regressivity of the projections P J , in the finite case any linear exten-
sion of the Bruhat order on W furnishes a representation of the algebra M(W,S),
made of triangular matrices with spectrum lying in {0, 1} and identity given by
P∅. The algebra M(W,S) is a subalgebra of the monoid algebra of regressive
order preserving functions (see [10, Section 2.5]).

For I, J ⊆ S we use the notation [I, J ] = 0 if m(s, t) ∈ {1, 2} for all s ∈ I,
t ∈ J , where m is the Coxeter matrix of (W,S). Otherwise we write [I, J ] 6= 0.
We use the same notation [·, ·] for the Lie bracket on the algebra End(VW ).

The next lemma is useful to prove some properties of the endomorphisms
P J and to characterize the projections commuting on a finite group.
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Lemma 3.2. Let (W,S) be a Coxeter system and w ∈ W . Then

P IP Jw = wI∪JP IP JwI∪J ,

for all I, J ⊆ S.

Proof. Since w = wJwJ = wI∪JwI∪J , we have

w = (wJ )I(wJ )IwJ

= wI∪J ((wI∪J )
J )I((wI∪J )

J )I(wI∪J )J

= wI∪J ((wI∪J )
J )I((wI∪J )

J )IwJ ,

where we have used Lemma 2.3 to obtain the last equality. It is clear that
wI∪J ((wI∪J )

J)I ∈ W I , so the result follows.

In the following proposition we give necessary and sufficient conditions for
projections to commute.

Proposition 3.3. Let (W,S) be a Coxeter system and I, J ⊆ S connected. The

following are equivalent:

1. [P I , P J ] = 0;

2. [I, J ] = 0 or I ∩ J ∈ {I, J}.

Proof. If I ⊆ J , then W J ⊆ W I so P IP J = P J ; moreover, by Lemma 2.3, we
have P JP I = P J . Therefore [P I , P J ] = 0.

Let [I, J ] = 0; then I = J = {s} or I ∩ J = ∅, by the connectedness of
I and J . In the first case the result is obvious. Let us consider the second
case. For w ∈ W we have wI∪J = wIwJ = wJwI and then, by Lemma 3.2,
P IP Jw = P JP Iw = wI∪J , i.e. P IP J = P JP I = P I∪J .

Now let [P I , P J ] = 0 and [I, J ] 6= 0. If I∩J 6∈ {I, J} let s ∈ I\J and t ∈ J\I
be such that [{s}, J ] 6= 0 and [{t}, I] 6= 0. By connectedness there exists a path
s, s1, s2, ..., sk, t of minimal length in the Coxeter graph of (W,S) connecting
s and t such that s1, ..., sk ∈ I ∩ J . Then P JP Itsksk−1 · · · s1s = P J t = e
and P IP J tsksk−1 · · · s1s = P Itsksk−1 · · · s1s = t, i.e. [P I , P J ] 6= 0. Hence we
conclude that I ∩ J ∈ {I, J}.

Let I ⊆ S; we say that a projection P I ∈ M(W,S) is connected if I is
connected. In the next proposition we show how any projection factorizes as a
product of connected projections.

Proposition 3.4. Let I =
n⊎

i=1

Ii be a partition of I ⊆ S by maximal connected

sets. Then P I = P I1P I2 · · ·P In .

Proof. By hypothesis [P Ii , P Ij ] = 0 for all i, j ∈ [n]; hence P I = P I1⊎...⊎In =
P I1P I2 · · ·P In , as in the proof of Proposition 3.3.

By Proposition 3.4 the algebra M(W,S) is generated by the connected pro-
jections. The following result concerns the general case of projections P I and
P J when I and J are possibly not connected.
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Proposition 3.5. Let I =
m⊎

i=1

Ii and J =
n⊎

i=1

Ji be partitions of I and J by

maximal connected sets. Then [P I , P J ] = 0 if and only if [P Ii , P Jj ] = 0 for all

i ∈ [m], j ∈ [n].

Proof. One implication is obvious. So let [P I , P J ] = 0 and i ∈ [m], j ∈ [n] be
such that [P Ii , P Jj ] 6= 0. Then, by Proposition 3.3, [Ii, Jj ] 6= 0 and Ii ∩ Jj 6∈
{Ii, Jj}. Let s ∈ Ii \ Jj and t ∈ Jj \ Ii so that [{s}, Jj] 6= 0 and [{t}, Ii] 6= 0.
Consider a path s, s1, s2, ..., sk, t of minimal length in the Coxeter graph of (W,S)
connecting s and t such that s1, ..., sk ∈ Ii ∩ Jj . Therefore s 6∈ J \ Jj , t 6∈ I \ Ii
and s1, ..., sk 6∈ (I ∪ J) \ (Ii ∩ Jj), since the sets {I1, ..., Im} and {J1, ..., Jn}
are partitions made by maximal connected subsets of I and J respectively. By
Proposition 3.4 we obtain

P IP J tsksk−1...s1s = P I1P I2 · · ·P ImP J tsksk−1...s1s

= P I1P I2 · · ·P Im tsksk−1...s1s

= P Iitsksk−1...s1s = t,

and
P JP Itsksk−1...s1s = P J t = e,

which is a contradiction.

Now we characterize the projections commuting on a finite group, testing
their commutativity on the maximum of the group.

Proposition 3.6. Let (W,S) be a Coxeter system such that |W | < ∞. Then

[P I , P J ] = 0 ⇔ [P I , P J ]w0 = 0,

for all I, J ⊆ S.

Proof. One implication is trivial. So let P IP Jw0 = P JP Iw0. By Lemma 3.2
we deduce that

P IP Jw0(I ∪ J) = P JP Iw0(I ∪ J) ∈ W I∪J ∩WI∪J = {e}.

Let v ∈ W . Then vI∪J 6 w0(I ∪ J). Since the projections are order
preserving, we obtain P JP IvI∪J 6 P JP Iw0(I ∪ J) = e and P IP JvI∪J 6

P IP Jw0(I ∪ J) = e. The result follows again by Lemma 3.2.

Lemma 3.2 and Proposition 3.6 give some characterizations of commuting
projections in the finite case. Let us resume these results.

Theorem 3.7. Let (W,S) be a Coxeter system such that |W | < ∞. Then the

following statements are equivalent:

1. [P I , P J ]w0(I ∪ J) = 0;

2. [P I , P J ]w0 = 0;

3. [P I , P J ] = 0.
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We give an example, referring to [3, Section 2.4] for the action of the projec-
tion P J on a permutation written in one line notation.

Example 3.8. Let (S6, {s1, s2, s3, s4, s5}) be the Coxeter system of type A5

realized by the symmetric group S6, generated by the simple transpositions

{s1, s2, s3, s4, s5} = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}.

In one line notation, we have that the element of maximal length in S6 is w0 =
654321.

The projection P {s1,s2} acts on a permutation σ, written in one line notation,

by reordering the set {σ(1), σ(2), σ(3)} and P {s2,s3} acts by reordering the set

{σ(2), σ(3), σ(4)}. Therefore

P {s2,s3}P {s1,s2}(654321) = P {s2,s3}(456321) = 435621

and

P {s1,s2}P {s2,s3}(654321) = P {s1,s2}(634521) = 346521.

The projection P {s1,s5} acts on a permutation σ by reordering the sets {σ(1), σ(2)}
and {σ(5), σ(6)} and P {s3,s5} acts by reordering the sets {σ(3), σ(4)} and {σ(5), σ(6)}.
Therefore

P {s3,s5}P {s1,s5}(654321) = P {s3,s5}(564312) = 563412

and

P {s1,s5}P {s3,s5}(654321) = P {s1,s5}(653412) = 563412.

We end this section by defining a graph useful for further developments.
Given a Coxeter system (W,S) we let G2(W,S) to be the non-commutation

graph of the set of idempotents {P J : J ⊆ S} \ {Id, PS}; then its set of vertices
is P(S)\{∅, S} and {I, J} is and edge if and only if [P I , P J ] 6= 0. We let G(W,S)
to be the graph G2(W,S) with labeled edges. A label m(I, J) is defined by

m(I, J) :=







2n+ 1, if (P IP J)n 6= (P JP I)n

and P J(P IP J)n = P I(P JP I)n;
2n+ 2, if P J (P IP J)n 6= P I(P JP I)n

and (P IP J)n+1 = (P JP I)n+1;
∞, otherwise,

for all edges {I, J}. As for Coxeter graphs, we drop the label m(I, J) = 3.
So, for example, the graph G(S4, [3]) is the one of Figure 1, where (S4, [3]) is
the symmetric group of order 24 with its standard Coxeter presentation. By
[32, Theorem 4.1] the graph G(Sn+1, [n]) is n-universal for forests; [32, Conjec-
ture 4.5] asserts that it is n-universal.

4 A representation of the Coxeter monoid alge-

bra

Given a Coxeter system (W,S) let us denote with M0(W,S) the subalge-
bra of M(W,S) with identity generated by the set of idempotents {P {s} ∈
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Figure 1: G(S4, [3])

End(VW ) : s ∈ S}. In this section we prove that the algebra M0(W,S) is iso-
morphic to the Coxeter monoid Z-algebra in the finite and infinite case and
that M0(W,S) = M(W,S) if |W | < ∞. These facts are known in the finite
case (see, e.g. [20]). In the infinite case M0(W,S) is a proper subalgebra of
M(W,S). The representation theory of the Coxeter monoid algebra over a field
in the finite case was firstly studied in [30]. Some results of this section, in the
finite case, could be deduced from the general theory exposed in the cited paper
and in more recent ones (see, e.g., [10] and [20]). To pursue homogeneity and
generality we will prove all the results we need in our setting and notation.

As a consequence of the Z-algebra isomorphism M0(W,S) ≃ Z[WM ] we ob-
tain that the Coxeter monoid algebra Z[WM ] of any type injects in the incidence
algebra I(W ;Z) of the Bruhat order. We also define a family of Z[WM ]-modules
which gives, in the right-angled case, a family of finite-dimensional representa-
tions of the Artin group WA, as it is shown in the next section.

In order to prove the announced isomorphism, we need the following lemma,
which states that the idempotents {P {s} ∈ End(VW ) : s ∈ S} satisfy the rela-
tions encoded in the Coxeter matrix of (W,S).

Lemma 4.1. Let (W,S) be a Coxeter system with Coxeter matrix m. Then the

label of the edge {{s}, {t}} in the graph G(W,S) is m(s, t), for all s, t ∈ S.

Proof. Let m(s, t) be even. Then, since (st)m(s,t)/2 = (ts)m(s,t)/2, we obtain

(P {s}P {t})k(st)m(s,t)/2 = (st)m(s,t)/2−k

6= s(ts)m(s,t)/2−k = (P {t}P {s})k(st)m(s,t)/2,

for all k < m(s, t)/2. The odd case is analogous. These computations also
prove the result if m(s, t) = ∞. Now let m(s, t) be even and w ∈ W . Then
w = w{s,t}w{s,t} and so (P {s}P {t})m(s,t)/2w = w{s,t} = (P {t}P {s})m(s,t)/2w. In
the odd case we proceed in the same manner. Therefore in all cases m(s, t) is
the label of the edge {{s}, {t}}, as defined at the end of the previous section.

Given u ∈ W with reduced expression s1s2 · · · sk, let us define

P e := Id,

Pu := P {s1}P {s2} · · ·P {sk}.
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Since a Coxeter group W has the word property, i.e. any two reduced words
for u ∈ W can be connected via a sequence of braid-moves (see, e.g. [3, Theo-
rem 3.3.1]), by Lemma 4.1 the endomorphism Pu is well defined for all u ∈ W .
Notice that such endomorphisms realize endomorphisms of the poset (W,6),
since they are composition of poset endomorphisms (see Proposition 2.2).

Proposition 4.2. Let u, v ∈ W . Then P vu = e if and only if u 6 v.

Proof. We prove the result by induction on ℓ(v). If ℓ(v) = 0 then P v = Id and
so the result is obvious. Let ℓ(v) > 0 and s ∈ DR(v). By Lemma 4.1 we can
write P v = P vsP s. There are two cases to consider:

1. s ∈ DR(u): in this case P su = us. Therefore P vu = P vsus and by the
inductive hypothesis P vsus = e if and only if us 6 vs. But us 6 vs if and
only if u 6 v.

2. s 6∈ DR(u): in this case P su = u. Hence P vu = P vsu and by the induc-
tive hypothesis P vsu = e if and only if u 6 vs. By the lifting property
(Proposition 2.1) we have that u 6 vs if and only if u 6 v.

By the next corollary we can deduce that for finite Coxeter systems the
algebra M(W,S) is generated by the idempotents P {s}.

Corollary 4.3. Let (W,S) be a Coxeter system, J ⊆ S and |WJ | < ∞. Then

Pw0(J) = P J .

In particular, |W | < ∞ implies M(W,S) = M0(W,S).

Proof. Let u = uJuJ ∈ W and w0(J) = ũuJ , for some ũ ∈ WJ . Then Pw0(J)u =
P ũPuJuJuJ = P ũuJ = uJ = P Ju.

Now we are ready to prove that the algebra M0(W,S) is isomorphic to the
monoid algebra over Z of WM .

Theorem 4.4. Let (W,S) be a Coxeter system. Then the function u 7→ Pu

defines an isomorphism of Z-algebras

Z[WM ] ≃ M0(W,S).

Proof. Let a =
∑

w∈B

awP
w ∈ M0(W,S) with aw ∈ Z \ {0} for all w ∈ B, where

B is any finite subset of W . Then there exists a set M(B) := {v1, ..., vk} of
maximal elements in B. Therefore, if a = 0, we have that for every v ∈ M(B),
av = ave +

∑

w∈B\{v}

awP
wv = 0, where Pwv 6= e for all w ∈ B \ {v} (by

Proposition 4.2); this implies av = 0, for all v ∈ M(B). Hence {Pw : w ∈ W}
is a Z-basis for M0(W,S) and then VW ≃ M0(W,S) as Z-modules. The result
follows since W = WM , {P s : s ∈ S} are idempotents which generate M0(W,S)
and, by Lemma 4.1, they satisfy the same relations as the generators of the
algebra Z[WM ].
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By Theorem 4.4, for any Coxeter system (W,S) we have obtained a faithful
representation of the monoid algebra Z[WM ], of dimension |W |.

Since P Jw 6 w for all w ∈ W , we can define a function PJ : Int(W ) → Z

by

PJ(u, v) :=

{
1, if u = P Jv;
0, otherwise,

for all [u, v] ∈ Int(W ). This implies the following corollary.

Corollary 4.5. Let (W,S) be a Coxeter system. Then the assignment P J 7→
PJ gives an injective algebra morphism from Z[WM ] to the incidence algebra

I(W ;Z).

Example 4.6. Let S3 be the symmetric group of order 6 with generators {s, t}.
Then M0(S3, {s, t}) is the Z-algebra generated by the identity and the matrices

P {s} =











1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0











, P {t} =











1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0











,

having chosen the following linear extension of the Bruhat order of (S3, {s, t}):
e < s < t < st < ts < sts.

Remark 4.7. By the factorizations w = wJwJ and its left version, one can see
that P Jw 6R w and QJw 6L w, where 6R and 6L are the right weak order
and the left weak order respectively (see [3, Chapter 3]). Therefore the repre-
sentation of the Coxeter monoid algebra Z[WM ] given by the endomorphisms
Pu realizes an injection into the incidence algebra I(W,6R;Z) and the one
given by the endomorphisms Qu realizes an injection into the incidence alge-
bra I(W,6L;Z). These algebras are isomorphic and they are subalgebras of
I(W ;Z), since (W,6L) ≃ (W,6R) and both are subposets of (W,6).

In the next lemma we prove that the idempotents in the Coxeter monoid
WM are the maxima of the finite parabolic subgroups (see also [10, Example 3.9]
and [25, Theorem 9]).

Lemma 4.8. The endomorphism Pu is idempotent if and only if u = w0(J),
for some J ⊆ S such that |WJ | < ∞.

Proof. We have already proved that Pw0(J) = P J . So let PuPu = Pu. If
u 6= w0(J) for all J ⊆ S such that |WJ | < ∞, then there exists s ∈ S such that
su > u and s < u. Therefore by Proposition 4.2 PuPu(su) = Pus = e 6= s =
Pu(su).

We can define a class of Z[WM ]-submodules of VW in the following manner.
For any v ∈ W , by the regressivity of P J , the Z-submodule of VW

Vv := span
Z
[e, v] (2)

is a Z[WM ]-submodule of VW ; moreover, by Lemma 2.5 and the left version
of Proposition 2.2, the Z-module endomorphisms QJ ∈ End(VW ) are Z[WM ]-
module endomorphisms of Vv, i.e. QJ ∈ EndZ[WM ](Vv). So the image of QJ is
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a Z[WM ]-submodule of VW ; we define this image by

V J,v := span
Z
{z ∈ JW : z 6 QJv}.

Thus, for any J ⊆ S, the Z[WM ]-modules Vv decompose as

Vv = V J,v ⊕ span
Z
{u−QJu : u ∈ \J [e, v]},

where we have defined \J [u, v] := {z ∈ W \ JW : u 6 z 6 v}, for all u, v ∈
W \ JW . By Lemma 2.5 we can also define, for any J ⊆ S, subalgebras of
End(VW ) by

MJ(W,S) := {QJa : a ∈ M(W,S)},

M\J(W,S) := {a−QJa : a ∈ M(W,S)}.

Then we have the following isomorphism of algebras:

M(W,S) ≃ MJ(W,S)⊕M\J(W,S).

Given an idempotent P 6= Id, let us define the idempotent P := Id−P and
let Id = Id. For any v ∈ W with reduced expression s1s2 · · · sk, the endomor-
phism (Id−P s1) (Id−P s2) · · · (Id−P sk) will be denoted by P

v
. The following

proposition shows that P
v

is well defined, since it is independent from the choice
of the reduced expression of v.

Proposition 4.9. Let (W,S) be a Coxeter system. Then

P
v
=

∑

u6v

(−1)ℓ(u)Pu

and

P v =
∑

u6v

(−1)ℓ(u)P
u
,

for all v ∈ W .

Proof. We proceed by induction on ℓ(v). If v = e the result is obvious. Let
ℓ(v) > 1 and s1s2 · · · s be a reduced expression for v. Then, by the inductive
hypothesis,

P
s1
P

s2
· · ·P

s
= P

vs
(Id−P s)

=
∑

u6vs

(−1)ℓ(u)Pu −




∑

u6vs

(−1)ℓ(u)Pu



P s

=
∑

u6vs

(−1)ℓ(u)Pu −
∑

u6vs
us<u

(−1)ℓ(u)Pu −
∑

u6vs
u<us

(−1)ℓ(u)Pus

=
∑

u6vs
u<us

(−1)ℓ(u)Pu +
∑

u6v
us<u

(−1)ℓ(u)Pu

=
∑

u6v
u<us

(−1)ℓ(u)Pu +
∑

u6v
us<u

(−1)ℓ(u)Pu

=
∑

u6v

(−1)ℓ(u)Pu,
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since, by Proposition 2.1, {u ∈ [e, vs] : u < us} = {u ∈ [e, v] : u < us}. The
second assertion can be proved by the same argument.

Remark 4.10. The involution P s 7→ P
s

defines an involution on the 0-Hecke
algebra analogous to the involution ι on H(W,S), which is not defined for q = 0.
Compare the expression of ι in the standard basis of the Hecke algebra and the
R-polynomials at q = 0 (see, e.g., [3, Sections 5.1 and 6.1]) with the result of
Proposition 4.9.

5 Representations of a right-angled Artin group

in an incidence algebra

In this section we prove that the Hecke algebra of a right-angled Coxeter
group injects in the Z[q, q−1]-algebra of the corresponding Coxeter monoid and
that the function s 7→ Ts provides an embedding of a right-angled Artin group
RA into the Hecke algebra of the Coxeter system (R,S) and then, by Corollary
4.5, in the incidence Z[q, q−1]-algebra of the Bruhat poset of R. We recall that
we have defined A := Z[q, q−1].

Given a right-angled Coxeter system (R,S) the functions f q : S → End(A⊗Z

VR) and f−1 : S → End(A⊗Z VR) defined by

f q(s) = q Id−(q + 1)P s

and
f−1(s) = − Id+(q + 1)P s

for all s ∈ S give two representations σq,R : H(R) → End(A⊗Z VR) and σ−1,R :
H(R) → End(A ⊗Z VR) respectively. Note that f−1(s) = q Id−(q + 1)P

s
and

f q(s) = − Id+(q+1)P
s
, so that f−1(s) = f q(s), for all s ∈ S. These functions,

when defined on the set of generators of Coxeter systems of other types, do not
provide representations of their Hecke algebras. In fact we have the following
results.

Proposition 5.1. Let (W,S) be a Coxeter system. Then

[f q(s)]2 = q Id+(q − 1)f q(s),

[f−1(s)]2 = q Id+(q − 1)f−1(s)

and

[f q(s)f q(t)]nv = (−q)n[v − n(q−1 + 1)vs] + ke,

[f−1(s)f−1(t)]nv = (−q)n[v − n(q + 1)vs] + k′e,

for all n > 0, s, t ∈ S such that m(s, t) > 2, where v := ts and k, k′ ∈ A.

Proof. The first two equalities follow by a direct computation. We prove the
second ones by induction on n. Let us prove the first equality. If n = 1 then
(q Id−(q + 1)P s)(q Id−(q + 1)P t)v = −qv + (q + 1)t and the result is true. Let
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n > 1. Therefore

((q Id−(q + 1)P s)(q Id−(q + 1)P t))nv

= (q Id−(q + 1)P s)(q Id−(q + 1)P t)((−q)n−2(−qv + (n− 1)(q + 1)t) + ke)

= (−q)n−2(q Id−(q + 1)P s)(qv + (n− 1)q(q + 1)t)) + k′e

= (−q)n−2(q2v − nq(q + 1)t) + k′′e

= (−q)n−1(−qv + n(q + 1)t) + k′′e,

for some k, k′, k′′ ∈ A.
We prove now the second equality. If n = 1 then (− Id+(q+1)P s)(− Id+(q+

1)P t)v = −q(v − (q + 1)t) and the result is true. Let n > 1. Therefore, by the
inductive hypothesis,

((− Id+(q + 1)P s)(− Id+(q + 1)P t))nv

= (− Id+(q + 1)P s)(− Id+(q + 1)P t)((−q)n−1(v − (n− 1)(q + 1)t) + ke)

= (−q)n−1(− Id+(q + 1)P s)(qv + (n− 1)(q + 1)t)) + k′e

= (−q)n−1(−qv + nq(q + 1)t) + k′′e

= (−q)n(v − n(q + 1)t) + k′′e,

for some k, k′, k′′ ∈ A.

When m(s, t) > 2, by specialization at q = 1, the results of Proposition 5.1
implies that [fx(s)fx(t)]n|q=1 6= Id, for all x ∈ {−1, q}, n > 0. Therefore, in
the Hecke algebra,

fx(s)fx(t) · · · fx(s)
︸ ︷︷ ︸

n times

6= fx(t)fx(s) · · · fx(t)
︸ ︷︷ ︸

n times

,

for all x ∈ {−1, q}, n > 0. This means that when (W,S) is not right-angled then
f q and f−1 do not provide representations of its Hecke algebras (not even of its
group algebra, when q = 1). Note that for q = 0 they realize the representation
of the Coxeter monoid algebra studied in the previous section, in all types.

The representations of the Hecke algebra of a right-angled Coxeter group
defined above are faithful; this is proved in the next theorem.

Theorem 5.2. The representation σx,R is faithful, for all x ∈ {−1, q}.

Proof. Let a :=
∑

w∈B

awTw ∈ H(R), B ⊆ R, |B| < ∞ and aw ∈ A \ {0} for

all w ∈ B. Let M(B) be the set of maximal elements in B. Then σ−1,R(a) =
∑

v∈M(B)

(q+1)ℓ(v)avP
v+a′ for some a′ ∈ A⊗ZM0(R,S) which does not lie in the

span of M(B). By Theorem 4.4 and the flatness of A over Z, we conclude that
σ−1,R(a) = 0 implies aw = 0 for all w ∈ B. The case x = q is analogous.

Theorem 5.2 gives an injection of the Hecke algebra of R into the monoid
algebra of RM over the ring A. Therefore, extending to the ring A the result of
Corollary 4.5, we obtain the next corollary.

Corollary 5.3. Let R be a right-angled Coxeter group. Then we have the

following injections of A-algebras:

H(R) →֒ A[RM ] →֒ I(R;A).
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Now we consider a right-angled Artin group RA. We want to define an
infinite dimensional faithful representation Σx,t : RA → Aut(Q⊗Z VR), for any
t ∈ Q \ {−1, 0, 1}, x ∈ {−1, q}. We need the following proposition, whose
statement can be easily verified.

Proposition 5.4. Let V be a A-module and P ∈ End(V ) an idempotent. Then

(q Id−(q + 1)P )n = qn Id−(qn − (−1)n)P,

(− Id+(q + 1)P )n = (−1)n Id+(qn − (−1)n)P,

for all n ∈ Z.

Let H∗(R) be the group of invertible elements of the Hecke algebra of R. The
next theorem asserts that the group morphism sending s ∈ S to Ts ∈ H∗(R) for
all s ∈ S provides an injective group morphism from RA to H∗(R).

Theorem 5.5. The group morphism φ : RA → H∗(R) defined on the generators

by φ(s) = Ts for all s ∈ S, is injective. Moreover, specializing at q = t ∈
Q \ {−1, 0, 1}, it gives a faithful representation Σx,t : RA → Aut(Q⊗Z VR), for

all x ∈ {−1, q}.

Proof. We recall that a reduced word in a right-angled Artin group is a word
with minimum number of syllables (see Section 2). Let sh1

1 sh2

2 · · · shk

k be any
reduced word for w ∈ RA, where w is not the identity. Putting hi = 1 for
all i ∈ [k], by the minimality of k we obtain a reduced word s1s2 · · · sk in the
Coxeter group R. By Theorem 2.11 this operation defines a function RA → R.
Notice that, by Proposition 5.4, we have that

f q(shi

i ) = [f q(si)]
hi = qhi Id−(qhi − (−1)hi)P si

and
f−1(shi

i ) = [f−1(si)]
hi = (−1)hi Id−(qhi − (−1)hi)P si .

Hence we obtain

σq,R(φ(w)) = (−1)k(qh1 − (−1)h1) · · · (qhk − (−1)hk)P s1···sk + a,

σ−1,R(φ(w)) = (qh1 − (−1)h1) · · · (qhk − (−1)hk)P s1···sk + a′,

for some a, a′ ∈ M0(R,S) independent of P s1···sk . Both right hand sides of the
above expressions are not the identity by Theorem 4.4. Thus we conclude that
σq,R(φ(sh1

1 sh2

2 · · · shk

k )) 6= Id and σ−1,R(φ(sh1

1 sh2

2 · · · shk

k )) 6= Id. Therefore, by

Theorem 5.2, we have that φ(sh1

1 sh2

2 · · · shk

k ) 6= Id and then φ is injective.
We have proved that σx,R ◦ φ : RA → Aut(A ⊗Z VR) is injective, for all

x ∈ {−1, q}; since t ∈ Q\{−1, 0, 1} implies (th1 − (−1)h1) · · · (thk − (−1)hk) 6= 0,
by specialization, we obtain the faithful representations stated.

Let us denote with I∗(R;A) the group of invertible elements of the incidence
algebra I(R;A) and with A[RM ]∗ the one of invertible elements of the monoid
A-algebra of RM . From Theorem 5.5 and Corollary 5.3 we can deduce the next
result.

Corollary 5.6. Let R be a right-angled Coxeter group. Then we have the

following injections of groups:

RA →֒ H∗(R) →֒ A[RM ]∗ →֒ I∗(R;A).
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We end noting that the modules Q⊗Z Vv, where Vv are the Z[WM ]-modules
defined in Equation (2), give rational representations of the Artin group RA, of
dimension |[e, v]| < ∞, for any v ∈ R. In fact A⊗ZVv are modules of the Coxeter
monoid algebra A[RM ], and then of the Hecke algebra of R, by Theorem 5.2,
and so the group RA acts on Q⊗ZVv, by Theorem 5.5. For example, when v = e
we have that Σq,t gives the alternating representation, for all t ∈ Q \ {−1, 0, 1}.
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