Brain tissue is a heterogeneous material, constituted by a soft matrix filled with cerebrospinal fluid. The interactions between, and the complexity of each of these components are responsible for the non-linear rate-dependent behaviour that characterises what is one of the most complex tissue in nature. Here, we investigate the influence of the cutting rate on the fracture properties of brain, through wire cutting experiments. We also present a computational model for the rate-dependent behaviour of fracture propagation in soft materials, which comprises the effects of fluid interaction through a poro-hyperelastic formulation. The method is developed in the framework of finite strain continuum mechanics, implemented in a commercial finite element code, and applied to the case of an edge-crack remotely loaded by a controlled displacement. Experimental and numerical results both show a toughening effect with increasing rates, which is linked to the energy dissipated by the fluid–solid interactions in the region surrounding the crack tip.

Fluid–solid interaction in the rate-dependent failure of brain tissue and biomimicking gels

Forte A. E.
2021-01-01

Abstract

Brain tissue is a heterogeneous material, constituted by a soft matrix filled with cerebrospinal fluid. The interactions between, and the complexity of each of these components are responsible for the non-linear rate-dependent behaviour that characterises what is one of the most complex tissue in nature. Here, we investigate the influence of the cutting rate on the fracture properties of brain, through wire cutting experiments. We also present a computational model for the rate-dependent behaviour of fracture propagation in soft materials, which comprises the effects of fluid interaction through a poro-hyperelastic formulation. The method is developed in the framework of finite strain continuum mechanics, implemented in a commercial finite element code, and applied to the case of an edge-crack remotely loaded by a controlled displacement. Experimental and numerical results both show a toughening effect with increasing rates, which is linked to the energy dissipated by the fluid–solid interactions in the region surrounding the crack tip.
2021
Brain tissue
Hydrogels
Poroelasticity
Rate-dependent fracture
Finite Element Analysis
Gels
Brain
File in questo prodotto:
File Dimensione Formato  
2102.11268.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri
JMBBM-D-21-00051_R1_Accepted.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1190389
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact