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Abstract

Brain tissue is a heterogeneous material, constituted by a soft matrix filled with cerebrospinal fluid.

The interactions between, and the complexity of each of these components are responsible for the non-

linear rate-dependent behaviour that characterizes what is one of the most complex tissue in nature.

Here, we investigate the influence of the cutting rate on the fracture properties of brain, through wire cut-

ting experiments. We also present a computational model for the rate-dependent behaviour of fracture

propagation in soft materials, which comprises the effects of fluid interaction through a poro-hyperelastic

formulation. The method is developed in the framework of finite strain continuum mechanics, imple-

mented in a commercial finite element code, and applied to the case of an edge-crack remotely loaded

by a controlled displacement. Experimental and numerical results both show a toughening effect with

increasing rates, which is linked to the energy dissipated by the fluid-solid interactions in the region

surrounding the crack tip.
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1. Introduction

Brain tissue is arguably one of the most complex, delicate and heterogeneous tissues of the human

body. Its structure is characterised by two main constituents: the grey matter, which contains the nerve

cell bodies, and the white matter, with a large proportion of myelinated axons. By a mechanical point

of view, neural tissues are among the softest of all internal organs, receiving protection from the skull

and isolation from external actions by the cerebrospinal fluid (Budday et al., 2020). A large proportion

of this fluid is free to move by diffusion and consolidation within the tissue’s solid network; as a result,

the brain behaves as a soft sponge: its microstructure, albeit highly inhomogeneous, presents small

pores that are saturated by fluid (Forte et al., 2017). Diffusion has a fundamental importance for the

brain function, delivering vital nutrients to the neural cells and playing an essential role in therapies

based on drug delivery (Nicholson, 2001). Besides, the motion of fluid within the solid network causes

volumetric shrinking and triggers consolidation effects (Franceschini et al., 2006), which can explain

various phenomena, including the onset and evolution of hydrocephalus and the brain shift during

surgeries (Forte et al., 2018). The interaction between interstitial fluid and solid matrix provides a

source of energy dissipation, which results in time-dependent behaviour frequently observed during

mechanical testing (Jin et al., 2013; Forte et al., 2017). In addition, a further source of dissipation is

related to viscoelasticity, caused by intracellular interactions between cytoplasm, nucleus and the cell

membrane (Budday et al., 2017a).

Mechanical models of the brain tissue at the continuum scale are usually formulated in the framework

of finite strain mechanics, addressing the nonlinear elastic and time-dependent behaviour (de Rooij and

Kuhl, 2016). The biphasic nature of the tissue can be captured by models derived from the classical

theory of consolidation in soil mechanics (Franceschini et al., 2006), eventually coupled with large defor-

mations (Forte et al., 2017; Hosseini-Farid et al., 2020). An equivalent description has been developed

in the context of mixture theories, leading to the formulation of a consistent framework for soft porous

media (Ehlers and Eipper, 1999; Comellas et al., 2020). Time-dependent behaviour due to viscous effects
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has been described by generalised Maxwell models or more refined descriptions elaborated in the finite

strain theory (Budday et al., 2017b; Haldar and Pal, 2018). However, with respect to tissue failure,

our understanding is considerably more limited. It is known that the brain tissue, as most internal

organs, does not carry significant mechanical loads; nevertheless, traumatic injuries expose the tissue to

damage and fracture (El Sayed et al., 2008). Furthermore, the tissue can be perforated with catheters,

needles and probes, during minimally invasive surgeries and regenerative therapeutics (Ashammakhi

et al., 2019; Terzano et al., 2020). Due to its high heterogeneity, failure properties in the brain tissue

are region dependent. In the white matter, which is characterized by fibrous axonal structures, failure

occurs by tearing of fibres when the tissue is loaded above a certain threshold (Budday et al., 2020).

At the microscale, axonal injury involves a viscoelastic mechanism with stretching and sliding of mi-

crotubules, depending on the entity of the deformation (Cloots et al., 2011). While the contribution of

fluid-solid interaction in terms of the tissue mechanical behaviour is widely recognised, the role of fluid

diffusion during failure has not been investigated. Furthermore, the flow of fluid in the brain tissue is

not homogeneous (Jamal et al., 2020). Due to the different microstructure, white matter is far more

permeable than grey matter, which instead presents densely connected networks that can entrap the

fluid phase (Budday et al., 2020). Such a difference might explain the stronger rate-dependency of white

matter during compression and tensile tests, because of a faster fluid drainage (Budday et al., 2020).

However, the characteristic time of fluid draining depends on the size of the perturbed region, which also

makes this contribution dependent on testing conditions (Wang and Hong, 2012). Therefore, there is a

need for investigating how rate-dependency and fluid-structure interactions affect fracture propagation

in brain tissue.

When a porous network is filled or saturated with fluid, mechanical and hydraulic responses are

coupled: forces and deformations change the pressure of interstitial fluid, while pressure gradients drive

fluid flow, resulting in mechanical deformation. During fracture, the flow of fluid inside the crack-tip zone

might affect the surface energy required for crack initiation and propagation. Despite scarce information

in the context of biological tissues, illuminating evidences come from experimental work on failure of
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hydrogels. As an example, studies on reversible gels suggest that the fracture energy can be increased

by the drainage of fluid in the crack-tip zone (Naassaoui et al., 2018).

In this work, our aim is to shed light on the rate-dependent fracture process in the brain tissue

caused by fluid draining. Firstly, we present the results of fracture tests performed on porcine brain

samples. To this aim we use the wire cutting protocol, which is a well established method to measure

the fracture properties of soft materials, including viscous foodstuff and gels (Goh et al., 2005; Baldi

et al., 2012; Forte et al., 2015). A computational model is then developed in the framework of finite

strain continuum mechanics, representing the large strain behaviour and fluid interaction through a

poro-hyperelastic model (Simon, 1992). The numerical analyses are focused on the process of crack

propagation, which in the case of wire cutting develops after the initial stages of indentation and tissue

rupture (Terzano, 2020). Through a simplified model of the fracture process in dissipative materials,

we are able to consider the energy dissipated by fluid-structure interaction as a function of the loading

rate. Finally, we provide a comparison with the poroelastic behaviour of a biomimicking gel that was

previously characterised by Forte et al. (2015).

2. Materials and methods

2.1. Wire cutting tests

When measuring the fracture toughness of soft materials, traditional techniques based on stress

intensity factors cannot be employed, since failure occurs when a large portion of the material is well

beyond the limit of small strain elasticity. Toughness is hereby defined as the total amount of energy

absorption during deformation until fracture occurs. Wire cutting tests were preferred with respect to

other available methods (such as, for instance, edge-notched tensile tests) because of the issues related to

the extreme softness of the brain tissue, the effect of self-weight and the impossibility of realising proper

clamping. Porcine brain tissue samples were prepared, removing the cerebellum and separating the two

hemispheres; each hemisphere was then positioned in the sample container with the frontal lobe facing
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upwards. The specimen would slowly shift under gravity and approximately occupy a square prism of

length 30 mm, width 30 mm and height 50mm. Steel wires of diameter dw = 0.05, 0.16, 0.25, 0.5mm were

inserted with an insertion speed of v = 5mm s−1, and the test with dw = 0.16mm was repeated with

v = 0.5mm s−1 and v = 50mm s−1. All tests were performed with a Biomomentum Mach-1™mechanical

testing system using a 1.5 N single-axis load cell, in a conditioned room at 19 °C temperature (Forte

et al., 2016). A schematic of the experimental setup is shown in Fig.1.

load cell

wire

brain sample

slit

Figure 1. Wire cutting testing schematic. 1-col figure

2.2. Model of poroelastic fracture

A model is proposed to account for the rate-dependency observed during wire cutting tests on

the porcine brain samples, which can be extended to similar materials with a soft and wet porous

microstructure. It is based on the following assumptions: (i) brain tissue and the biomimicking gels

are modelled as poro-hyperelastic materials; (ii) rate-dependent failure is described with a model of

the fracture process based on the spatial separation of dissipative length scales and the definition of

a cohesive process zone; (iii) fracture in cutting is assimilated to the propagation of a far-field loaded

crack, depending on a geometric parameter (in this specific case, the wire diameter).
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2.2.1. Poro-hyperelastic model

In this section, the brain tissue and the biomimicking gels are treated as biphasic soft materials,

where a solid skeleton is saturated by biological fluids, and a poro-hyperelastic model is described, with

specific focus on the equations needed for its numerical implementation in a finite element (FE) code

(Forte et al., 2017). The theory of finite deformation continuum mechanics, as presented in standard

textbooks on the subject, e.g. Holzapfel (2000), is the background on which the model is developed.

Accordingly, a material point of the biphasic medium is identified in the current configuration by the

position vector x(X, t), uS ≡ u = x −X(x, t) is the displacement of this point in the porous solid

phase and uF defines the corresponding quantity for the pore fluid (Simon, 1992) (Fig.2a). We also

recall the decomposition of the spatial velocity gradient l = ∇u̇ = d + w, where d = sym(∇u̇) is the

symmetric rate of deformation tensor, w = −wT is the anti-symmetric spin tensor and u̇ is the velocity

of the solid phase.1

In a biphasic material, each phase in the current configuration is defined by a volume fraction

nα = dvα/dv, where α = S, F corresponds, respectively, to the solid skeleton and the pore fluid.

Assuming conditions of saturation, we establish the fundamental relationship nF + nS = 1 (Cheng,

2016). In the following, we denote n = nF the porosity of the medium, which is correlated to the

current void ratio through e = n/(1− n). The continuity mass equation for phase α reads (Ehlers and

Eipper, 1999)
D

Dt
(nαρα) + nαρα∇ · u̇α = 0 (1)

where D(•)/Dt is used for the material time derivative and ρα is the effective density of each phase. In

the solid skeleton, Eq.(1) provides the following relationship

(1− n)

(1− n0)
= JSJ

−1 (2)

1Throughout this section, ∇(•) denotes the spatial gradient while ∇ · (•) is used for the spatial divergence operator.
Italic is used for scalars, bold italic for vectors and bold roman for tensors.
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where n0 is the porosity in the initial configuration, J is the volume ratio of the biphasic material and

JS is instead referred to the solid skeleton. Notice that if the matrix is assumed incompressible, we

have JS = 1; however, this does not lead to macroscopic incompressibility, because volume change can

occur through changes in the volume fractions. Considering an incompressible fluid phase, Eq.(1) can

be rewritten as
D

Dt
n+ n∇ · u̇F = 0 (3)

For consistency with an updated Lagrangian framework in which the incremental solution strategy

is implemented in the commercial FE code adopted, field equations need to be referred to the current

configuration. In particular, the weak form of the linear momentum balance involves the rate of the

Cauchy stress tensor σ, which is provided by (Holzapfel, 2000)

σ̇ = σ′
J

+ w · σ + σ ·wT − ṗF I (4)

where σ′J is the Jaumann rate of the effective Cauchy stress, given by σ′ = σ+pF I, with pF = −1/3 trσ

being the pore pressure and I the second-order identity tensor.

Finally, we introduce the constitutive assumptions for the biphasic medium. The fluid flow through

the porous skeleton is characterized by Darcy’s law, with an isotropic permeability tensor which remains

unchanged during the deformation. Although formulated in the context of soil mechanics, Darcy’s

approach is consistently employed in modelling biological tissues, including brain and cartilage (Simon,

1992; Franceschini et al., 2006; Hosseini-Farid et al., 2020; Comellas et al., 2020). The phenomenon of

swelling, related for instance to the absorption of fluid molecules by the solid network, is not considered

in the model. In the macroscale description adopted in this work, the pore pressure appears to be a

consistent variable to describe the energy dissipated by fluid-solid interactions. In quasi-static conditions
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and neglecting inertia, Darcy’s law correlates the rate of fluid volume to the pressure gradient

ẇ = − κ

ηF
∇pF (5)

where ẇ = n(u̇F − u̇) is the seepage velocity, representing the rate of fluid volume flowing through a

unit normal area, κ is the intrinsic permeability and ηF is the fluid viscosity (Cheng, 2016).

The behaviour of the solid skeleton is specified by a hyperelastic isotropic strain energy function.

Several studies related to brain mechanics, e.g. Budday et al. (2017a); Forte et al. (2017), have shown

that a modified one-term Ogden model provides optimal fit to experimental data. The compressibility of

the solid skeleton is implemented through the usual decomposition of the solid deformation into isochoric

and volumetric parts, such that the strain energy density is provided by

Ψ(λ̄i) + U(J) =
2µ

α2

(
λ̄α1 + λ̄α2 + λ̄α3 − 3

)
+

1

D
(J − 1)2 (6)

where µ, α and D = 2/KS (KS is the bulk modulus) are material parameters and λ̄i = J−1/3λi are

the modified principal stretches (Holzapfel, 2000). The effective Cauchy stress tensor is split into its

deviatoric and volumetric components σ′ = s′ + p′I (Selvadurai and Suvorov, 2016), with p′ = ∂U/∂J

and (Connolly et al., 2019)

s′ = J−1βi(ni ⊗ ni) (7)

where ni are the principal spatial directions and the stress coefficients are expressed by βi = λ̄i∂Ψ/∂λ̄i−

1/3λ̄j∂Ψ/∂λ̄j (the summation rule applies to repeated indices). The last step required for the numerical

implementation in the updated Lagrangian framework is to make explicit the objective rate introduced

in Eq.(4) through a spatial fourth-order elasticity tensor, such that

σ′
J

= c′J : d (8)
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where c′J is the spatial elasticity tensor defined in terms of the Jaumann rate of the Cauchy stress. The

explicit formulation for a compressible hyperelastic model in terms of the principal stretches can be

found, for instance, in the recent work by Connolly et al. (2019). For completeness, we recall that a

discretised and linearised form of the previous equations is needed, where variations are computed with

respect to the field variables of the problem —which in our case are represented by nodal displacements

u and pore pressure values pF .

2.2.2. Rate-dependent fracture process

fluid flow

A - process zone
B - crack-tip dissipative zone
C - far-field region

A

B

C

lp
lp ld

cohesive zone

σmax

(b)(a) time t=0

time t

x

X

u
Ω0

Ω

X1,x1

y2

y1

X2,x2

X3,x3

P0

O

P

dvS

dvF

dv=JdV

b
∂Ωt

Figure 2. (a) Reference and current configurations of a biphasic continuum body. (b) Illustrative sketch of
the fracture process in a poroelastic soft material. Shown in figure are (A) the process zone with radius lp, (B)
the crack-tip dissipative zone with radius ld and (C) the far-field region. The enlarged view shows the process
zone schematised with a rate-independent cohesive zone model. 2-col figure

The flow of interstitial fluid in the pores of a soft solid skeleton results in time-dependent deformation

and draining of the biphasic medium, according to a relaxation time which depends on the material

properties (namely, the permeability) and the length of macroscopic observation (Hu and Suo, 2012).

Hence, the analysis of rate-dependent fracture requires that poroelastic relaxation is considered as a

source of energy dissipation correlated to crack propagation, in which the length of observation is put

in relation with some characteristic size of the fracture process. The model here proposed is based on

the ideal case illustrated in Fig.2b, where a propagating crack in a semi-infinite body is shown with
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three regions where dissipative phenomena possibly occur (Terzano, 2020). Firstly, we have damage

phenomena occurring at the molecular scale, which are condensed within a process zone of radius lp and

account for the intrinsic toughness of the material. At a larger scale, dissipative terms are originated

from relaxation in the bulk material but become relevant to crack propagation only if they affect the

crack-tip region, which for now we broadly define as the material affected by the vicinity of the crack.

Their effect is to prevent the crack driving force provided by external loading from being fully delivered

to the crack. Finally, we have bulk relaxation processes in the far-field zone, which however might be

neglected as they do not directly contribute to the fracture process.

As a consequence of the proposed decomposition, following Zhao (2014) we can split the fracture

energy in two terms: the intrinsic term Γo originating from the process zone, and an additional term Γd

due to energy dissipation in the crack-tip region affected by propagation

Γ = Γo + Γd (9)

In our work, the intrinsic toughness Γo is considered rate-independent. Conceptually, this is equiv-

alent to employ a cohesive process zone which enriches the continuum poro-hyperelastic model with a

prescribed rate-independent stress-displacement relationship on the separation interface (Schwalbe et al.,

2012) (see the enlarged view in Fig.2b). The term Γd includes energy dissipation due to the drainage

of fluid in the crack-tip region, whose size ld depends in general on a typical size of the specific test

(Hu and Suo, 2012). In wire cutting the relevant length parameter is the radius of the wire; however,

as explained in Sect. 2.2.3, we can formulate the hypothesis that the size of the dissipative crack-tip

region is provided by the so-called elasto-adhesive length, which is a characteristic of the fracture process

(Creton and Ciccotti, 2016). This length scale defines the concept of softness by a fracture mechanics

point of view and represents the distance at which the energy cost of creating new crack surfaces is
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comparable to the strain energy in the material. Therefore we may write

ld = Γo/E (10)

where E is the initial Young’s modulus of the material and ld � lp in order to ensure the separability of

scales between the different regions. Please notice that Eq.(10) also provides, to a first approximation,

a measure of the radius %o of a blunted crack in an elastic material (Creton and Ciccotti, 2016).

2.2.3. Fracture process in wire cutting

Cutting with wires involves deformation, friction and fracture in the target material. In this Section,

we describe the approach through which we could describe the cutting process by focusing on crack

propagation only. Frictional effects are neglected due to the reduced contact area of wires. Our aim

is to establish the limits under which crack propagation in cutting can be compared to propagating a

crack in symmetric far-field loading conditions (Fig.3).

Differently from crack propagation under remote loading, the finite size of the wire adds an additional

length to the fracture process of cutting (Terzano et al., 2018). It is assumed that the tool exerts some

sort of constraint on the elastic blunting of the crack, which can be limited by the fact that the crack

opening displacement is determined by the tool geometry. By comparing the critical tip radius of a

blunted crack %o, which is a material property, with the wire diameter dw we are able to distinguish two

different scenarios (Terzano, 2020):

• for dw ≥ 2%o, crack propagation happens as an autonomous process under symmetric mode-I

conditions, with a certain distance between the wire and the crack tip. The crack tip radius is

determined by its natural value %o, approximately defined by Eq.(10);

• for dw < 2%o, the shape of the blunted crack is constrained by the wire, which touches the crack-

tip. In this situation, the mechanism of propagation is different from that under remote loads and

requires a further input of external energy. In other terms, crack propagation is energy limited.
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Figure 3. Sketch of the plane strain geometry employed to investigate the elastic fracture process in wire
cutting. Under the assumption of dw ≥ 2%o, the equivalent model of an edge crack of length c, subjected to
an opening remote displacement U , is obtained. The local system y1, y2 is defined with respect to the moving
crack tip. 1-col figure

The analyses of rate-dependent fracture described in this work applies to wire cutting under the

assumption that crack propagation is an autonomous process, that is, for dw ≥ 2%o. Although the

previous criterion is derived in a purely elastic situation, we assume that it is extended to the biphasic

material.

3. Results

3.1. Experimental

Force-displacement curves obtained from wire cutting tests on the porcine brain tissue are illustrated

in Fig.4a, for a wire diameter dw = 0.16mm and three insertion speeds (average of various tests).

Following the initial indentation, in which the tissue deforms prior to fracture, the force tends to stabilise

in the steady-state phase of cutting (Terzano et al., 2018). Differently from the results of similar tests

on other soft materials (Forte et al., 2015), the transition to the steady state is not well marked in the

brain tissue, due to the extreme softness and the inhomogeneous structure of the samples. In Fig.4b we
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show the force-displacement curves for single tests, where one can distinguish two peaks, corresponding

to grey and white matter failure, followed by relaxation, before reaching an approximately stable trait

where the wire cuts through the sample.

Wire cutting can be employed to infer the intrinsic toughness of the tissue Γo. To do so, we need

to remove the contribution due to energy dissipation; typically, this means performing a fracture test

at very low loading rates, so that quasi-static conditions are assumed. The results are here elaborated

according to the model proposed by Kamyab et al. (1998). Briefly, the steady-state cutting force Fss

results from the force needed to open the crack and a contribution due to the formation of a flow zone

around the bottom half of the wire, as shown in Fig.4c. Friction produces a circumferential stress in

this region but is neglected everywhere else. Then, the force per unit thickness is proportional to the

wire diameter, according to
Fss
t

= Γ + (1 + f)σmaxdw (11)

where σmax has to be intended as a characteristic cohesive stress of the material, f is the frictional

coefficient and t is the out-of-plane thickness of the sample.

The steady-state force Fss/t obtained from the cutting experiments at v = 5mm s−1 is plotted as

a function of the wire diameter in Fig.4d. Since a steady value cannot be easily recognised, Fss is

computed as the average force corresponding to the onset of crack propagation observed in the tests.

A linear fit is employed to extrapolate the force to zero diameter, such that, according to Eq.(11), the

value of the fracture toughness is obtained. However, data from the test performed at v = 0.5mm s−1

show that the force Fss/t is lower, suggesting that there might be an extra contribution due to energy

dissipation resulting in Γ > Γo. Lacking complete data for lower velocities, due to the complexity of

realising proper tests on the super-soft brain tissue, we then hypothesize that the same force-diameter

slope applies to any insertion speed and employ the intercept at dw = 0.16 mm to extrapolate the

corresponding steady-state forces. These are shown on a logarithmic plane in Fig.4e and fitted with a

linear interpolating function. The intercept with the vertical axis, corresponding to a quasi-static value
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of the insertion speed, should provide the correct value of Γo. Furthermore, the increase of toughness

with speed follows a power-law, with exponent approximately equal to 0.2. Due to the uncertainty in

experimental data, we might assume that a value of Γo comprised between 0.1− 1J m−2 is a reasonable

approximation. Indeed, this is the same order of magnitude of the toughness of biomimicking gelatins

computed from wire cutting tests by Forte et al. (2015).

3.2. FE analyses

3.2.1. Fracture in the elastic material

Before employing FE analyses to understand the origin of the rate-dependent fracture properties

observed in experiments, we need to verify the hypothesis presented in Sect.2.2.3, which allows us to

reduce the cutting problem to one of crack propagation under remote loading when dw ≥ 2%0. To this

purpose, we have modelled the steady-state cutting phase as the insertion of a rigid circular wire into

an elastic edge-cracked body of width w and height 2h, with initial crack length c (see Fig.3). Since

the wire extension in the out-of-plane direction is much larger than the thickness t of the samples, a

plain strain assumption is introduced. Due to symmetry, only half specimen is modelled with pertinent

constraints imposed to the lower edge of the body. Eight-node plane strain elements are adopted, with

a suitable refinement around the crack tip, which is artificially blunted by taking an initial small radius

of curvature. From analyses of mesh convergence, the smallest element in the crack tip region is equal

to 10−5 h. The sample material is purely elastic, described by the strain energy provided in Eq.(6). In

such a case, the crack driving energy can be computed through the J -integral, such that the onset of

crack propagation occurs when Jint = Γo. The parameters of the brain tissue implemented in the FE

model are summarised in Table 1 (please notice that fluid-related quantities are not relevant here). The

analyses were run with the quasi-static implicit solver of the commercial software Abaqus.

We have studied the insertion of wires with diameter dw = 0.125 − 1 mm that are pushed into the

crack for its full length. According to the hypotheses presented in Sect.2.2.3, frictional effects are not

considered; however, a small coefficient of Coulomb’s friction was introduced in the FE analyses because
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Table 1. Mechanical parameters of the poro-hyperelastic model

Ogden’s parameters Brain tissue 1 Gelatin (10% w/w) 2

µ (Pa) 0.52 · 103 6.21 · 103

α -4.4 2.64
D Pa−1 1.3 · 10−3 69 · 10−6

Hydraulic conductivity k m s−1 1.57 · 10−9 1.25 · 10−6

Fluid specific weight γF (kN m−3) 9741 9741
Initial void ratio e (%) 20 90
Intrinsic toughness Γo J m−2 0.1 1.1

1 Forte et al. (2017)
2 Forte et al. (2015)

we have found that it helped to achieve numerical convergence of the contact algorithm. From the

deformed coordinates y1, y2, the radius of the blunted crack can be expressed through the radius % of

a circle fitting the profile within a distance equal to 10−3c from the crack tip. Plots of the deformed

crack when Jint = Γo are shown in Fig.5a, suggesting that the crack blunting with wires of various

diameters is almost equivalent to the edge-crack subjected to remote loading. The case of an edge-crack

subjected to far-field loading, by means of applied displacements U in the direction perpendicular to

the crack, is added as comparison (dashed line in the plot). The crack profiles look very similar, except

that corresponding to dw = 0.125mm, which displays a markedly different trend. By plotting the critical

crack tip radius % against the wire diameter dw for each case considered (Fig.5b), we notice that they

are all approximately equal to a constant value. Interestingly, such a value is a good approximation

of the characteristic length %o = Γo/E, which for the brain tissue is in the order of 0.65 · 10−4m.

Therefore, the transition to constrained blunting seems to occur when dw = 0.125mm. Below this limit,

we hypothesise that the tip radius scales with the wire diameter (hence the slope 1/2 shown in the

plots). In conclusion, we can assume that, in the materials under consideration, steady-state cutting

can be reduced to a problem of crack propagation when the wire diameter is dw ≥ 0.13mm.
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3.2.2. Fracture in the biphasic medium

Retaining the assumption of autonomous crack propagation, we can study rate-dependent fracture

in the equivalent edge-cracked model with applied remote displacements. The geometry is illustrated in

Fig.6a: it consists of a large rectangular sample of width 2h = 50mm and height w = 20mm, containing

an edge-crack of length c = 1mm. Normal displacements are applied to the left and right boundaries

such that the strain rate is constant, that is U = [exp(ε̇t)− 1]h, where ε = ln[(h + U)/h] is the true

strain in the direction normal to the crack line. The stretch ratio is defined by λ = 1 + U/h. Two

materials, the brain tissue and the gelatin studied by Forte et al. (2015), are described with the poro-

hyperelastic model presented in Sect.2.2. The properties are summarised in Table 1. Notice that the

hydraulic conductivity k is employed in place of the permeability κ, to which is related by means of

k = κγF/ηF . The finite element mesh is built with four-node quadrilateral plane strain hybrid elements

with additional degrees of freedom for the pore pressure pF . The smallest element in the crack tip region

is equal to 10−5 h. Boundary conditions are specified in terms of displacements (left and right edges are

prevented from lateral motion), and in addition on the pore pressure degree of freedom. A condition of

draining, enforced by setting the pore pressure equal to zero, is specified for the horizontal free edges

and the edge-crack surfaces in contact with atmospheric pressure (Fig.6a). The reference porosity n0

needs to be specified as initial condition through the void ratio e. The analyses were run with the

implicit solver of the commercial software Abaqus. A transient fluid-stress diffusion analysis is required

to simulate fluid flow through the porous material, where the accuracy of the solution is governed by

the maximum pore pressure change allowed in an increment. Different values have been considered for

the best compromise between accuracy and efficiency.

The main purpose of the analyses is to understand how fluid draining in the crack-tip region affects

the onset of crack propagation. In other terms, we are considering the effect of dissipation and of the

loading rate on the crack driving energy, whereas the fracture toughness is assumed equal to Γo. The
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critical condition is then defined by

Jint(ε̇) = Γo (12)

Due to coupling between deformation of the solid network and fluid diffusion, the J -integral is path-

dependent since it includes poroelastic dissipation. In the biphasic material its definition is provided

by

Jint =

∫
C

(
Ψn1 −

∂ui
∂x1

σ′ijnj

)
ds, (13)

where Ψ is the strain energy density and nj is the unit vector normal to a contour C enclosing the crack

tip (Fig.3). The results presented below are obtained considering a contour that surrounds the crack-tip

dissipative zone, whose radius, from Eq.(10), is approximated to ld = 0.65 · 10−4m.

A preliminary analysis on the elastic material is employed to investigate the quasi-static situation. In

such a case, the critical condition evaluated through Eqs.(12)-(13) provides the stretch λo, corresponding

to the onset of crack propagation. Results in the poroelastic materials are illustrated in Fig.6b, where

we show the contours of the fluid pressure pF , for three different strain rates ε̇, when λ = λo, within

the crack-tip dissipative zone. The red areas correspond to the drained or relaxed condition (pF = 0)

whereas the blue regions are affected by fluid flowing in the pores. It can be seen that, independently

from the rate, the greater permeability of gelatins allows for a rapid draining of the whole crack-tip

region. On the contrary, it appears that fluid takes a longer time to drain the same area in the brain

tissue, where permeability is much lower. Since fluid draining is a dissipative process, it is reasonable to

assume that crack propagation is affected by this phenomenon, at least in the brain tissue. In Fig.6c we

present the normalised energy at constant stretch λo for different strain rates. The observed behaviour

can be better comprehended by plotting the normalised stretch when Jint = Γo, Fig.6d. As expected,

no difference with respect to the elastic quasi-static situation emerges in the gelatin, which therefore

behaves as an elastic relaxed material. The situation looks different in the brain tissue, where both the

strain energy and the critical stretch are affected by rate. Notice that we cannot consider these stretches

as the real ultimate stretches of the material, since the J -integral does not provide an exact measure of
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the crack driving energy; nevertheless, the results shown in Fig.6d suggest a toughening effect due to

fluid draining in the brain tissue.
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Figure 4. (a) Cutting force versus displacement for dw = 0.16mm. The curves show the average of various
tests on porcine brain tissue, with a high dispersion due to the inhomogeneous structure of the samples. (b)
Force-displacement from single tests at the three different insertion speeds, showing the corresponding stages of
material failure. (c) Schematic of wire cutting showing the model of the rupture process proposed by Kamyab
et al. (1998). (d) Steady state force Fss/t as a function of the wire diameter. The continuous linear fit is
obtained for v = 5mms−1. (e) Logarithmic plot of the intrinsic toughness as a function of the insertion speed.
2-col figure
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4. Discussion

Both experimental and numerical results suggest that the fracture properties of the brain tissue

are rate-dependent. Although we cannot rule out the effect of viscoelasticity, our study is focused

on the effects of fluid draining in the biphasic medium. This phenomenon is often neglected in the

analysis of fracture or other situations with relatively fast loading rates, based on the observation that

poroelastic relaxation derives from a long-range motion of interstitial fluid in the solid network. Indeed,

in macroscopic samples the process is quite slow compared, for instance, to viscoelastic relaxation (Hu

and Suo, 2012). However, we point out that the characteristic time of poroelastic relaxation also depends

on the characteristic length of observation, which in the presence of a crack is much smaller than the

characteristic size of the sample. Since the topic of fracture in the brain tissue is not well documented,

we can employ observations on fracture of hydrogels in order to discuss the results obtained.

In the crack-tip zone of soft porous tissues, high uniaxial tensile stresses trigger a take-up of fluid

from the far-field region. Since these high stress gradients are confined to a small region, whose extension

in the brain tissue under investigation is in the order of 10−5 m, fluid draining of the crack tip zone is

a relatively quick phenomenon. The mechanism is illustrated in Fig.7: initially the solid is saturated

and there is only an infinitesimal zone close to the tip of the existing crack where the fluid pressure

is zero; as time goes by, this region increases in extent until the whole crack-tip region is drained.

The key observation is that the draining process is relevant with respect to fracture only if the material

relaxation in the crack-tip dissipative region happens in times comparable to those of crack propagation.

By treating the pressure-driven fluid flow in the biphasic medium as a diffusive process, the time of

poroelastic relaxation can be defined as the time needed to drain an area of radius ld (Hui et al., 2013)

td = l2d/DF (14)

whereDF is the diffusion coefficient, which depends on the permeability, the fluid viscosity and the elastic

properties of the solid. To a first approximation, in linear poroelasticity and plane strain conditions we
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have DF = 2µ(1− ν)κ/(1− 2ν)ηF , where µ and ν are, respectively, the shear modulus and Poisson’s

ratio of the solid material. Ideally, we can distinguish two limit situations:

• slow strain rates or high permeability: the draining process extends to a large region surrounding

the crack-tip zone. Here we observe an extended relaxation but this becomes ineffective with

respect to fracture. The material behaves as a soft compressible solid;

• fast strain rates or reduced permeability: fluid diffusion is too slow to be effective and the crack-

tip region is saturated at the instant corresponding to the onset of propagation. With respect to

fracture, the material behaves as a soft incompressible solid.

Critical situations are those in the middle, where fluid draining may produce an enhancement of

the material fracture toughness. This is the effect that we have observed with our model in the brain

tissue (Fig.6). On the contrary, the case of gelatin falls in the situation of highly permeable materials.

However, there are some limits in the procedure adopted, which deserve to be discussed below and will

be addressed in future research.

drained undrained
crack tip

crack tip

fast rate

slow rate

ld

ld

Figure 7. Sketch of the crack-tip dissipative region and influence of fluid draining at fast and slow strain rates
ε̇. 1-col figure

The computational model that we have proposed is based on the separation of length scales, with

23



the assumption that the process zone is rate-independent. Indeed, putting into relation its extension to

the average spacing of the network, which is in the scale of 50-100 nanometers (Tønnesen et al., 2018;

Vidotto et al., 2019), the hypothesis seems to be well motivated. However, other studies explained fluid-

related toughening based on draining within the process zone: interestingly, Forte et al. (2015) proposed

a mechanism of this type to justify the observed rate-dependent fracture properties of gelatin, which

cannot be captured by the analyses presented in this work. Although the proposed poro-hyperelastic

model is able to couple large deformation and fluid flow, more advanced models considering the full

coupling between the solvent diffusion and tissue swelling might be required, e.g. Hong et al. (2008);

Bouklas et al. (2015a); Brighenti and Cosma (2020). This would also allow us to implement a modified

definition of the J -integral proposed for swelling materials, which is path-independent and computes the

transient energy energy release rate by separating the energy lost in diffusion from the energy available

to drive crack growth (Bouklas et al., 2015b).

The model of rate-dependent fracture was applied to analyse experimental data coming from wire

cutting tests. We have explained, supported by dedicated numerical analyses (see Fig.5), the limits

under which we can isolate the stage of crack propagation, leaving aside the whole process of contact

and indentation that occurs in the experiments. Specifically, this happens above a critical wire diameter;

below, crack propagation becomes unstable and the shape of the crack is constrained. This behaviour

was also observed experimentally in hydrogels by other authors (Baldi et al., 2012) and motivated by the

reduced stiffness of such materials. More correctly, we are able to say that it depends on the competition

between the cost of creating new surfaces and the elastic strain energy of the material. Although our

FE results provided meaningful insights on poroelastic toughening (Figs. 6c-d), we have no means to

establish a direct confrontation with the experimental data. As a matter of fact, experiments revealed

a rate-dependent toughening in terms of the velocity of wire insertion (Figs. 4e), which in the steady-

state can be reasonably considered to coincide with the crack velocity. In the numerical model we

have instead explored the effect of the strain rate on the onset of crack propagation, but we cannot

establish an analytical relationship between the strain rate and the crack propagation velocity. It comes
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naturally to think that higher strain rates result in faster crack propagation, although this might hold

only below a certain limit, as shown for instance in fracture tests on hydrogels (Mayumi et al., 2016).

Ideally, we could have simulated the complete cutting process directly through the finite element model

and use cohesive elements to simulate the process of propagation. Incidentally, a similar approach has

successfully modelled complex cutting problems in soft elastic materials (Terzano et al., 2020; Skamniotis

and Charalambides, 2020). However, to calibrate the cohesive model for the brain tissue would have

required additional data for the characterisation of its frictional behaviour, and possibly some effects of

fluid lubrication (Reale and Dunn, 2017), which are unknown.

Finally, we discuss shortcomings of the method through which we have derived the intrinsic fracture

toughness of brain tissue, in the order of Γ0 = 0.1− 1J m−2. In Fig.4d we have assumed that the slope

of the steady state cutting force FSS versus the wire diameter dw is the same for different velocities.

However, wire cutting analyses on biomimicking gelatins by Forte et al. (2015) have shown that the slope

of the interpolating function increases with the insertion velocity while it tends to become constant

only at low velocities. Furthermore, the extrapolation procedure to infer the intrinsic toughness Γo

from Eq.(11) was based on the assumption that v = 1 mm min−1 is a reasonable speed for quasi-static

conditions. To a first approximation, we might relate the quasi-static threshold to the process of fluid

diffusion, which in turn depends on the permeability of the material. The employed value was also

derived from similar observations by Forte et al. (2015) on gelatins. However, considering the large

difference with the permeability of brain tissue, our assumption needs to be verified against further

experimental observations. This point brings us to a last aspect that should be considered in future

work: the issue of accurately measuring and modelling permeability. For the sake of simplicity, we

have adopted the hypothesis of material isotropy: however, while this seems to be a valid assumption

for the elasticity of the brain tissue, diffusion or permeability properties are remarkably anisotropic, in

particular in white matter regions characterised by axonal structures (Jamal et al., 2020). In addition,

brain tissue permeability can be modified substantially under loading by swelling and additional coupling

with the local tissue deformation, suggesting the need of more refined models.
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5. Conclusion

Testing the fracture properties of super soft tissues through standard tensile specimens is a complex

task. For this reason, wire cutting was here employed to analyse the influence of rate on the fracture

energy of brain tissue. The experimental data show an evident increase of the cutting force with the

rate of insertion, suggesting that some form of energy dissipation affects the cutting process. In this

work, we speculate that the rate-dependent toughening is due to poroelastic dissipation in the vicinity

of the crack that is propagated ahead of the wire. We have proposed a computational model which

considers the brain tissue as a biphasic poro-hyperelastic material. Through finite elements analyses of

an edge-cracked sample, subjected to remote loading with varying strain rate, we have shown how the

process of fluid draining in the crack-tip region might affect the fracture toughness of the material. We

can then summarise the main findings:

• the analysis of wire cutting experimental data suggests a power-law increase of fracture toughness

with the rate of insertion, as already observed in biomimicking gelatins;

• we have identified a length scale which distinguishes the fracture process of cutting in soft materials

from crack propagation under remote loading;

• finite element analyses of the fracture process in the poroelastic material have confirmed the

toughening effect with the rate of applied loading. According to the poro-hyperelastic model, such

a contribution is chiefly controlled by the value of the intrinsic permeability of the material.

This work has purposely neglected the dissipative behaviour provided by viscoelasticity in order to

focus on fluid-related effects. Future work will be dedicated to extend the proposed model to coupled

viscoelasticity and fluid diffusion. In the context of fracture, accurate models should specifically target

the rate-sensitivity of the process zone. By a computational point of view, cohesive models might still

be the ideal candidates to include energy dissipation through a time-dependent cohesive law. Our view

is that they should be developed on the ground of a micromechanical description of the disintegrating
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material ahead of the crack tip. In particular, we envisage that further research is needed to characterise

the effect of water diffusion on mechanical deformation by a micromechanical point of view.
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