Azetidinium salts are important motifs in organic synthesis but are difficult to obtain due to extremely long synthetic protocols. Herein, a rapid continuous-flow process for the on-demand synthesis of azetidinium salts is described. In particular, the nucleophilic addition of secondary amines and the subsequent intramolecular N-cyclization have been investigated in batch and continuous-flow modes, exploring the effects of solvent type, temperature, reaction time, and amine substituent on the synthesis of azetidinium salts. This has enabled us to quickly identify optimal reaction conditions and obtain microkinetic parameters, verifying that the use of a flow reactor leads to a reduction of the activation energy for the epichlorohydrin aminolysis due to the better control of mass and heat transfer during reaction. This confirms the key role of continuous-flow technologies to affect the kinetics of a reaction and make synthetic protocols ultrarapid and more efficient.

Gram-Scale Domino Synthesis in Batch and Flow Mode of Azetidinium Salts

Sivo A.;Ruta V.;Vile G.
2021-01-01

Abstract

Azetidinium salts are important motifs in organic synthesis but are difficult to obtain due to extremely long synthetic protocols. Herein, a rapid continuous-flow process for the on-demand synthesis of azetidinium salts is described. In particular, the nucleophilic addition of secondary amines and the subsequent intramolecular N-cyclization have been investigated in batch and continuous-flow modes, exploring the effects of solvent type, temperature, reaction time, and amine substituent on the synthesis of azetidinium salts. This has enabled us to quickly identify optimal reaction conditions and obtain microkinetic parameters, verifying that the use of a flow reactor leads to a reduction of the activation energy for the epichlorohydrin aminolysis due to the better control of mass and heat transfer during reaction. This confirms the key role of continuous-flow technologies to affect the kinetics of a reaction and make synthetic protocols ultrarapid and more efficient.
2021
File in questo prodotto:
File Dimensione Formato  
2021_Gram-scale domino synthesis in batch and flow mode.pdf

accesso aperto

: Publisher’s version
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1189280
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact