This letter addresses the challenge of solving large-scale Mixed Integer Linear Programs (MILPs). A resolution scheme is proposed for the class of MILPs with a hidden constraint-coupled multi-agent structure. In particular, we focus on the problem of disclosing such a structure to then apply a computationally efficient decentralized optimization algorithm recently proposed in the literature. The multi-agent reformulation problem consists in manipulating the matrix defining the linear constraints of the MILP so as to put it in a singly-bordered block-angular form, where the blocks define local constraints and decision variables of the agents, whereas the border defines the coupling constraints. We translate the matrix reformulation problem into a hyper-graph partitioning problem and introduce a novel algorithm which accounts for the specific requirements on the singly-bordered block-angular form to best take advantage of the decentralized optimization approach. Numerical results show the effectiveness of the proposed hyper-graph partitioning algorithm.

Hyper-Graph Partitioning for a Multi-Agent Reformulation of Large-Scale MILPs

Manieri L.;Falsone A.;Prandini M.
2022-01-01

Abstract

This letter addresses the challenge of solving large-scale Mixed Integer Linear Programs (MILPs). A resolution scheme is proposed for the class of MILPs with a hidden constraint-coupled multi-agent structure. In particular, we focus on the problem of disclosing such a structure to then apply a computationally efficient decentralized optimization algorithm recently proposed in the literature. The multi-agent reformulation problem consists in manipulating the matrix defining the linear constraints of the MILP so as to put it in a singly-bordered block-angular form, where the blocks define local constraints and decision variables of the agents, whereas the border defines the coupling constraints. We translate the matrix reformulation problem into a hyper-graph partitioning problem and introduce a novel algorithm which accounts for the specific requirements on the singly-bordered block-angular form to best take advantage of the decentralized optimization approach. Numerical results show the effectiveness of the proposed hyper-graph partitioning algorithm.
2022
computational methods
Large-scale systems
optimization
File in questo prodotto:
File Dimensione Formato  
hypergraph_manieri2021.pdf

accesso aperto

Descrizione: Accepted version
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 356.75 kB
Formato Adobe PDF
356.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1183232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact