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Abstract— This paper addresses the challenge of solving
large-scale Mixed Integer Linear Programs (MILPs). A res-
olution scheme is proposed for the class of MILPs with a
hidden constraint-coupled multi-agent structure. In partic-
ular, we focus on the problem of disclosing such a structure
to then apply a computationally efficient decentralized opti-
mization algorithm recently proposed in the literature. The
multi-agent reformulation problem consists in manipulating
the matrix defining the linear constraints of the MILP so
as to put it in a singly-bordered block-angular form, where
the blocks define local constraints and decision variables
of the agents, whereas the border defines the coupling
constraints. We translate the matrix reformulation problem
into a hyper-graph partitioning problem and introduce a
novel algorithm which accounts for the specific require-
ments on the singly-bordered block-angular form to best
take advantage of the decentralized optimization approach.
Numerical results show the effectiveness of the proposed
hyper-graph partitioning algorithm.

Index Terms— Large-scale systems, Optimization, Com-
putational methods.

I. INTRODUCTION

AMixed Integer Linear Program (MILP) is an optimization
program with both continuous and discrete decision

variables of the following form:

min
x

c>x (1a)

subject to: Ax ≤ b (1b)
x ∈ Rnc × Znd (1c)

where vector x collects the nc continuous decision variables
and the nd discrete ones, vector c ∈ Rnc+nd defines the cost
function, matrix A ∈ Rq×nc+nd and vector b ∈ Rq define q
scalar constraints. A decision vector x is feasible if it belongs
to the mixed integer feasibility set S = {x ∈ Rnc × Znd :
Ax ≤ b}. A decision vector x ∈ S is an optimal solution to
(1) if it minimizes the cost function c>x over S.

MILPs arise in different contexts and engineering appli-
cations and allow to formulate a variety of decision-making
problems involving systems comprising continuous and logical
components, [1]–[6]. However, if the system is large-scale
and with a high number of discrete decision variables, then,
the resulting MILP is typically hard to solve because of its
combinatorial complexity: finding an optimal solution is often
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not viable in practice, and one has to resort to heuristic
approaches to recover computational tractability and find a
solution that is – at least – feasible, see e.g., [7] and [8].
The same issue has been also addressed in recent works
on distributed optimization of constraint-coupled multi-agent
MILPs, [9]–[12].

In a constraint-coupled multi-agent MILP, multiple agents
cooperatively aim at optimizing the sum of their individual
cost functions with respect to local decision variables subject
to both individual and global constraints originating from
resource sharing. Formally, a constraint-coupled multi-agent
MILP is given by:

min
x1,...,xm

m∑
i=1

c>i xi (2a)

subject to:
m∑
i=1

Eixi ≤ f (2b)

xi ∈ Xi, i = 1, . . . ,m, (2c)

where Xi in (2c) is the mixed-integer set defined by the local
constraints and given by Xi = {xi ∈ Rnc,i × Znd,i : Dixi ≤
di}, with nc,i and nd,i respectively denoting the number of
continuous and discrete decision variables of agent i. The
coupling constraint in (2b) is defined by vector f ∈ Rp and
matrices Ei ∈ Rp×ni , i = 1, . . . ,m, where ni = nc,i + nd,i
is the total number of decision variables of agent i.

The work in [11] introduces a decentralized iterative ap-
proach for computing a feasible solution to (2) in a finite
number of iterations, while quantifying its sub-optimality
level. A key point of the decentralized scheme in [11] is
that, at each iteration, each agent solves a lower-dimensional
MILP, while a central unit handles the coupling constraints.
This allows to address multi-agent MILPs with a high number
of agents. The strategy is most effective if the number of
discrete variables per agent is small, since this determines
the computational complexity of the resolution scheme, and
if the number of agents is large compared to the number of
coupling constraints, since this affects the sub-optimality level
of the obtained solution.

The constraint-coupled multi-agent MILP (2) can be rewrit-
ten in the general MILP form (1) by defining c> = [c>1 · · · c>m]



and collecting all local and global constraints in
D1

. . .
Dm

E1 · · · Em


︸ ︷︷ ︸

A


x1

...

xm


︸ ︷︷ ︸

x

≤


d1

...
dm
f


︸ ︷︷ ︸

b

, (3)

where the resulting matrix A has a singly-bordered block-
angular structure, [13]. Starting from this observation, we
propose in this paper a resolution scheme for a large-scale
MILP that uncovers its hidden constraint-coupled multi-agent
structure so as to solve it using [11]. In order to find if
(1) has such a hidden structure, we need to manipulate the
matrix A and reduce it to a singly-bordered block-angular
form, where the blocks define both local constraints and local
decision variables of the fictitious agents, whereas the border
corresponds to the coupling constraints.

Retrieving a block-angular form for a (sparse) matrix A is a
well-known problem. For example, in numerical analysis it is
used to parallelize computations in LU or QR decomposition,
matrix multiplication and inversion, whereas in optimization,
it is adopted in the Dantzig-Wolfe decomposition [14]. For
this reason, several algorithms have been proposed to per-
form such a transformation. The most common approach
consists in reformulating the matrix transformation problem
into a graph partitioning problem. First, a suitable hyper-
graph representation for matrix A is derived with decision
variables associated to nodes and constraints to connections
among nodes, then a partition of the hyper-graph nodes in
m sets (parts) with a minimal number of connection between
parts (cut-size) is searched for, and, finally, the hyper-graph
partition is re-interpreted as a permutation of the matrix A (see
e.g. [13] and [15]) leading to a singly-bordered block-angular
structure with parts associated with blocks and the cut-size
to the border. Unfortunately, available algorithms for hyper-
graph partitioning are not directly applicable to our setting,
mainly because they do not take into account the following
requirements originated from the adoption of the multi-agent
resolution scheme in [11]: i) the cut-size of the partition (the
number of coupling constraints) has to be small compared
to the number of parts (the agents) so as to reduce the sub-
optimality level; ii) nodes associated with discrete decision
variables have to be fairly distributed among the parts so as
to balance the computational load among the fictitious agents.

In this paper, we shall introduce a novel hyper-graph par-
titioning algorithm that accounts for these requirements and
show its performance through a simulation-based comparative
analysis with a state-of-the-art algorithm.

II. HYPER-GRAPH REPRESENTATION OF A MATRIX

We start recalling some notions on graph theory to then
describe the hyper-graph representation of a matrix and the
reformulation of the problem of reducing it to a singly-
bordered block-angular form as a partitioning problem.

A hyper-graph H = (U ,N ) is defined as a set U of nodes
and a set N of nets (or hyper-edges). Every net ni ∈ N is a
subset of nodes, ni ⊆ U , and represents a connection among

them. If all nets have cardinality2, each (hyper-)edge connects
two nodes and the standard notion of graph is recovered. In
Figure 1c, we report an example of a hyper-graph H. Each
node is represented with a circle containing its label uj , while
each net is depicted as a solid square labelled with ni. The
nodes in a net are called pins and the set of pins in a net ni
is denoted as Pins(ni). The set of nets connected to a node
uj is instead denoted as Nets(uj). A net ni is said to be
incident on a node uj if uj ∈ Pins(ni), and nodes uh and
uj are neighbours if there exists a net ni incident on (i.e.
connecting) both nodes. The set of neighbours of node uj is
denoted as Γ(uj). For example, net n3 in Figure 1c is incident
on nodes u1, u10 and u15, that are its pins (i.e. Pins(n3) =
{u1, u10, u15}); u1, u10 and u15 are neighbours and Γ(u15) =
{u1, u10}; nets n3, n6, and n9 belong to Nets(u1). An m-way
node partition of a hyper-graph H = (U ,N ) is a collection
Π = {U1, . . . ,Um} defining a partition of the node set U in m
parts. Given a partition Π of H, we say that net ni connects
part Uh if ni has at least one pin in Uh. Nets are called cut
(or external) if they connect more than one part and uncut (or
internal) otherwise. Note that it is always possible to derive an
equivalent representation of Π as an m-way net partition Π =
{U1, . . . ,Um} ≡ {N1, . . . ,Nm;Next}, where Nh = {n ∈
N : Pins(n) ⊆ Uh} contains the internal nets connecting only
part Uh, h = 1, . . . ,m, whilst Next = N \

⋃m
h=1Nh contains

all the cut nets. The cardinality of Next is the cut-size of the
partition. Figure 1c shows a 3-way partition of the hyper-graph
H, with the ellipses denoting the parts. Its cut-size is p = 2,
being Next = {n1, n9}. A partition Π = {U1, . . . ,Um} is
called ε-balanced if each part Uh satisfies |Uh| ≤ (1 + ε)

⌈
|U|
m

⌉
where |U| denotes the cardinality of set U . The partition is
balanced when ε = 0 (see Figure 1c). An ε-balanced m-way
partition is optimal if it has minimum cut-size.

Given a matrix A, we can derive its row-net hyper-graph
representation by constructing a hyper-graph H = (U ,N ),
where each node in U identifies a column of A and each net
in N corresponds to a row of A. More specifically, if the entry
aij of A is non-zero, then node uj is a pin of net ni. Since each
row of A corresponds to a constraint and each column to a
decision variable, then the nodes of the hyper-graph represent
the decision variables and each net represents a constraint.
Matrix A in Figure 1a, for example, translates into the hyper-
graph H with 16 nodes and 13 nets in Figure 1c. An m-way
partition Π = {U1, . . . ,Um} ≡ {N1, . . . ,Nm;Next} of H
induces a permutation of A and the permuted matrix AΠ has
singly-bordered block-angular structure. Specifically, nodes in
Uh and internal nets in Nh identify columns and rows of block
Dh, h = 1, ...,m, in (3), whilst nets in Next correspond to
the border [E1, . . . , Em], [13]. Figure 1b shows the permuted
constraint matrix AΠ associated to the 3-way partition of H
in Figure 1c.

III. PROPOSED HYPER-GRAPH PARTITIONING METHOD

State-of-the-art hyper-graph partitioning algorithms aim at
finding an optimal ε-balanced partition, for an a-priori given
number m of parts. However, as anticipated at the end of
the introduction, for the decentralized multi-agent approach in
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(a) Constraint matrix A
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(b) Permuted matrix AΠ

(c) Hyper-graph H and a pos-
sible 3-way balanced partition
Π = {U1,U2,U3}

Fig. 1: Constraint matrix with a hidden structure.

[11] to be effective in solving the MILP in (1), we need to
bring matrix A into a singly-bordered block-angular through
a hyper-graph partitioning strategy that jointly
• minimizes the ratio p

m between the cut-size p and the
number of parts m, as opposed to p only;

• balances the distribution among the parts of the nodes
corresponding to the discrete decision variables (discrete
nodes).

As for nodes corresponding to continuous decision variables
(continuous nodes), they can be unevenly distributed if this
helps in balancing the discrete nodes and/or reducing p

m .
In this paper, we propose a method that integrates a suitably

designed iterative algorithm for partitioning a hyper-graph in
m parts (Section III-A) within a strategy to determine m so
as to minimize the ratio p

m (Section III-B).

A. Hyper-graph partitioning in m parts

Algorithm 1 provides the pseudo-code of the proposed
procedure for partitioning in a given number m of parts a
hyper-graphH = (U ,N ) representing matrix A appearing in a
MILP (1). Besides m and the sets Uc and Ud of continuous and
discrete nodes in U , Algorithm 1 takes as inputs the maximum
number Dmax of discrete nodes per part and the maximal
value η for the ratio p

m where p is the cut-size of the sought
hyper-graph partition. Since our final objective is solving (1)
through the multi-agent scheme [11], then, Dmax is dictated
by the MILP solver capability, whereas η ∈ (0, 1) relates to
the admissible degradation of the quality of the solution. Note
that m must satisfy mDmax ≥ |Ud|, since otherwise some of
the parts in the partition would necessarily contain a number
of discrete nodes that exceeds the solver capability.

An m-way partition Π? of H is determined in Algorithm
1 by subsequently isolating from H suitably chosen, weakly
coupled, groups of nodes (the parts) and adding them to
Π?. More precisely, a hyper-graph Hρ is first introduced (cf.
Step 4) by adding to the original hyper-graph H a number
nδ = mDmax − nd of discrete dummy nodes, i.e., nodes not
connected by any net. As suggested in [16], this allows to

Algorithm 1: Hyper-graph partitioning
Input: H original hyper-graph Dmax max discrete nodes

Ud set of discrete nodes m number of parts
Uc set of continuous nodes η threshold for the p

m ratio

1: h = m
2: Hρ = (Uρ,Nρ) = H = (Uc ∪ Ud,N )
3: nδ = m ·Dmax − |Ud|
4: Hρ = add_dummy_nodes(Hρ,nδ)
5: Π? = ∅
6: p = 0
7: repeat
8: H̃ρ = coarsening(Hρ)
9: Π̃ρ={Uρ,i}hi=1={{Nρ,i}hi=1;Nρ,ext}=

= h-way_partitioning(H̃ρ, h)
10: [Hρ, Πρ] = ungrouping(H̃ρ, Π̃ρ)
11: [Uρ,β1 , . . . ,Uρ,βB ,Nρ,τ ] = parts_isolation(Hρ,Πρ)

12: Hρ =
(
Uρ \

{⋃B
b=1 Uρ,βb

}
,Nρ \

{⋃B
k=1Nρ,βk

}
\ Nρ,τ

)
13: h← h−B
14: Π? ← Π? ∪ {Uρ,β1 , . . . ,Uρ,βB}
15: p← p+ |Nρ,τ |
16: until h < 2 ∨ p

m > η
17: Π? = remove_dummy_nodes(Π?)

Output: Partition Π?

add some flexibility while seeking for an m-way partition
of Hρ that is balanced in terms of discrete nodes, since
those parts with dummy nodes will have an actual number
of discrete nodes smaller than the other parts but in any case
not exceeding the allowed Dmax value. The underlying idea
is that we are certainly looking for a balanced partition, but
we allow for imbalance in those cases when this is needed
to meet the constraint of not exceeding the solver capabilities
Dmax while having a low p

m ration.
Each iteration is performed on Hρ whose size gets progres-

sively reduced according to the following steps. The initial
coarsening (cf. Step 8) phase assigns each continuous node
in the hyper-graph Hρ to the discrete node it is most coupled
with, so as to enforce in the final partition a balance in the
discrete nodes distribution. The resulting coarsened hyper-
graph H̃ρ contains supernodes, each one with a discrete node
only and the associated continuous ones. Then, a partitioning
operation (cf. Step 9) computes an h-way balanced minimum
cut-size partition Π̃ρ of the coarsened hyper-graph H̃ρ. The
number h of desired parts is set equal to m at the first iteration
and then progressively reduced as groups of nodes are removed
(cf. Step 13). Last, the isolation step (cf. Step 11) is performed
to start isolating a block of the final singly-bordered block-
angular form of A and remove it while accounting for its
contribution to the size p of the border. To this purpose,
supernodes are ungrouped (cf. Step 10) to translate Π̃ρ in
terms of the corresponding partition Πρ of the original hyper-
graph Hρ, which may be different from Hρ since it accounts
also for indirect connections between discrete nodes through
continuous nodes. Those parts of Πρ that are connected with
the rest of the hyper-graph by the smallest number of external
nets are then isolated at Step 11, and the set Nρ,τ containing
the external nets that connect them to the rest of the graph is
defined. Note that the number B of parts that are isolated at
Step 11 can be larger than 1. This is because, while identifying



a least-connected part and removing the nets that connect it to
the others, further ones that are not connected to the rest of the
hyper-graph may arise, so that also those parts can be removed
without increasing the size p of the border. A final removal
(cf. Step 12) step removes from the hyper-graph Hρ the B
least-connected parts that have been isolated, together with the
external nets connecting them to the rest of the hyper-graph
in set Nρ,τ and their internal nets in Nρ,βk

, k = 1, . . . , B.
At each iteration, the identified B least-connected parts are

stored in the partition Π? (cf. Step 14) whose cut-size p is
updated accordingly (cf. Step 15), thus growing throughout
iterations. Algorithm 1 is either run until m parts are identified
or preemptively interrupted if the ratio p

m exceeds the thresh-
old η. As better clarified next, the coarsening and partitioning
steps are not guaranteed to be optimal and their outcome
can vary in different runs. This motivates the adoption of
subsequent coarsening and partitioning steps within Algorithm
1 not to get stuck in a sub-optimal solution, as well as its
repetitive application to improve the current solution or to find
one in case of an early stop.

A more detailed description of the procedures implementing
the first three steps is provided hereafter.

1) Coarsening: The grouping strategy proposed to associate
continuous variables to discrete ones is summarized in Algo-
rithm 2, and is a modified version of the Edge Coarsening
(EC) procedure adopted in [17]–[19]. EC merges pairs of
nodes based on the strength of their connection, evaluated
considering the number and the size of the nets they share
(i.e. the nets that are incident on both nodes). First, for each
net n in the hyper-graph a hyper-edge weight ω(n) = 1

|Pins(n)|
is computed. Then, the strength of the connection between a
pair of nodes u, v is measured by the rating function

rEC(u, v) =
∑

n∈Nets(u)∩Nets(v)

ω(n)

which can be used to determine, for each node u, the best con-
traction partner v?∈ arg maxv rEC(u, v) to be merged with,
the rationale being that the smaller the size of the net n and
the more nets connecting u and v, the tighter is the coupling
between its pins. The grouping operation is, then, performed
by randomly selecting a node u in the hyper-graph, searching
for its best contraction partner v? among its neighbours Γ(u)
and merging them together in a supernode. The procedure is
repeated until a given criterion on the coarsened hyper-graph
is met.

The grouping strategy proposed in Algorithm 2 follows a
similar paradigm, with three modifications: i) it never merges
discrete nodes together; ii) it merges continuous nodes prefer-
ably with discrete nodes, possibly with other continuous nodes
but only if they are neighbours; iii) it uses a modified rating
function r(u, v) = rEC(u,v)

ν(u)+ν(v) , where the weight ν(u) is equal
to the number of nodes inside the (super)node u (1 if u is
standard node) and the scaling factor 1

ν(u)+ν(v) is introduced
to promote a balanced distribution of the continuous variables
in the supernodes. Deterministic tie-break rules are applied in
case of multiple maximizers.

2) h-way partitioning: The h-way partitioning applied to the
coarsened hyper-graph H̃ρ distributes the supernodes (each

Algorithm 2: Hyper-graph coarsening
Input: H hyper-graph

1: H̃ = H = (Uc ∪ Ud,N )
2: for each v ∈ Uc do
3: if Γ(v) ∩ Ud 6= ∅ then

{find the best discrete contraction partner}
4: select u?∈ arg max

u∈Γ(v)∩Ud
r(u, v)

5: else if Γ(v) ∩ Uc 6= ∅ then
{find the best continuous contraction partner}

6: select u?∈ arg max
u∈Γ(v)∩Uc

r(u, v)

7: else
{assign to a random discrete node}

8: randomly select u? ∈ Ud
9: end if

10: H̃ = contract(H̃, u?, v)
11: end for
Output: H̃ coarsened hyper-graph

one associated with a discrete, possibly dummy, node) among
the parts following a sequential break-off paradigm. The
procedure is summarized in Algorithm 3.

First introduced in [16], sequential break-off finds an h-way
partition of an input hyper-graph with n nodes by iteratively
isolating groups of n

h nodes having a weak connection (i.e.,
a low number of common nets) with the remaining ones.
More formally, at the first iteration, an initial 2-way partition
(bisection) {U1,U \ U1} is created (cf. Steps 4-5) by randomly
selecting a subset U1 of nh =

⌈
n
h

⌉
nodes. Such bisection is,

then, optimized (cf. Step 6) to reduce the cut-size preserving
the relative imbalance, the refined subset U?1 is set aside
and the procedure is repeated on the remaining elements in
U \ U?1 until all h parts of the h-way partition are stored
in Π0. Finally, the procedure performs pair-wise comparisons
between the parts (cf. Step 11) aiming at making the h-way
partition pair-wise optimal, i.e. such that for every pair Ui,Uj ,
i 6= j, the 2-way partition {Ui,Uj} is a balanced minimum
cut-size bisection of the sub-hyper-graph induced by Ui and
Uj . Comparisons are performed until no improvement can be
made or a maximum number of comparisons is reached. The
minimum cut-size bisection returned by Step 6 is obtained
starting from the initial random bisection and then applying
the state-of-the-art iterative refinement scheme proposed by
Fiduccia and Mattheyses (FM) in [20], which is commonly
adopted, with minor modifications, in most of the available
partitioning algorithms.

3) Isolation: The part isolation procedure works as follows.
We first determine the number of cut nets connecting each part
Uρ,i, i = 1, . . . , h. We then select the part Uρ,β1 having the
minimum number of nets in the cut. Uρ,β1 is then added to
the output partition Π? and removed from Hρ together with its
internal and external nets. All other blocks Uβ2

, . . . ,UβB
(if

any) that after this removal operation are no longer connected
by any external net are also added to the final partition Π?.
This allows the next iteration to seek for (h − B) instead
of h − 1 parts of the reduced hyper-graph Hρ, speeding up
the decomposition without affecting the cut-size of the final
partition Π?.



Algorithm 3: h-way partitioning (via sequential break-off)
Input: H hyper-graph, h number of parts

1: nh =
⌈
|U|
h

⌉
2: U2 = U
3: for k = 1, . . . , h− 1 do
4: U1 = select_n_h_elements(U2, nh)
5: U2 = U2 \ U1
6: {U?1 ,U?2 } = FM_refinement(H, {U1,U2})
7: UΠ0,k = U?1
8: U2 = U?2
9: end for

10: Π0 = {UΠ0,1, . . . ,UΠ0,h−1,U2}
11: Π? = pairwise_comparison(Π0,H)

Output: Π? final partition

B. Estimation of the number m of parts

Algorithm 1 partitions the input hyper-graph H in a number
of parts m that is fixed and a-priori given. The overall
decomposition procedure, however, should be able to provide
an estimate for m, maximizing the number of parts while pre-
serving a satisfactory cut-size p. We propose here a strategy for
estimating m that avoids running Algorithm 1 for all values for
m in a range, which can be ineffective and time-consuming.
This is achieved by exploiting the flexibility introduced by
adding discrete dummy nodes. Recall that we introduced
in Algorithm 1 nδ dummy nodes to allow the retrieval of
partitions with unbalanced distributions of the actual discrete
nodes among the parts. When the number of dummy nodes
is sufficiently large, the procedure can use some of them to
entirely fill one or more surplus parts. Whenever this occurs,
the initial estimate m̂ can be reduced, and Algorithm 1 can be
re-launched with the new guess.

The procedure starts by seeking a m-way partition with
m = m̂0 =

⌈
nd

Dmin

⌉
, where Dmin ∈ (1, Dmax] represents an

affordable computational effort that can be easily endured by
each agent, in terms of number of discrete variables. At each
iteration k, the new m̂k+1 is computed deducting from m̂k the
number of surplus parts identified in the partitioning phase,
till possibly

⌈
nd

Dmax

⌉
is reached. The returned partition is the

one that minimizes the p̂
m̂ ratio. Notice that the efficiency of

such estimation strategy strongly depends on the ability of the
partitioning algorithm to create empty parts that other state-
of-the-art partitioning schemes do not provide.

IV. COMPARATIVE SIMULATION ANALYSIS

In this section we assess the performance of the proposed
hyper-graph partitioning method on a set of 100 matrices A
with hidden singly-bordered block angular structure AΠ. The
matrices are generated according to the following protocol:
the number of columns of A (and AΠ) associated with
continuous and discrete nodes of its hyper-graph represen-
tation, nc and nd, are randomly selected in the intervals
[450, 520] and [400, 500], respectively. The number of blocks
m◦ of the hidden matrix AΠ varies between 13 and 20 with
uniform probability. The size of the border p◦ is chosen so
as 1

0.25 ( p
◦

m◦ − 0.1) has a folded standard normal distribution.

Matrix AΠ has a sparsity pattern determined by the density of
each block and of the border, ranging respectively in [0.07, 0.1]
and [0.03, 0.2]. Depending on the distribution of continuous
and discrete nodes among the blocks, the hidden structure can
be either: a) perfectly balanced when both continuous and dis-
crete nodes are equally distributed, b) only-discrete balanced
when only the discrete nodes are equally distributed, and c)
unbalanced when discrete nodes are unevenly distributed. The
three configurations can occur with the same probability. The
amount of imbalance is determined by setting the difference
between the maximum and minimum number of discrete and
continuous nodes per block equal to ∆d = dδd · nd

m e and
∆c = dδc · nc

m e where δc ∈ [0, 0.7] and δd ∈ [0, 0.5] are
selected at random. The overall number of rows of AΠ can
vary between 60% and 110% of the number of columns. The
number of rows per block is chosen to be the same in case a) of
perfectly balanced distribution, whilst a maximum difference
of 15 is admitted for cases b) and c). A row with coefficients
that are nonzero within a block and zero outside is added
per block so as to guarantee that it is not possible to move
variables from one block to another without increasing the size
of the border while preserving the number of blocks.

For comparative purposes, we apply h-Metis, a state-of-the-
art hyper-graph partitioning algorithm introduced in [17], that
uses subsequent bisections steps to seek for the minimum
cut-size partition. We first evaluate the performance of both
partitioning approaches in the case when some information
on the hidden structure is available and can be used to
tune the algorithms. In particular, in our algorithm we use
the minimum and maximum number of discrete nodes per
part to set the value Dmin, Dmax, whilst we let it estimate
the number of parts m̂. As for h-Metis, we set m = m◦

and tune the so-called ub-factor µ, that fixes the maximum
relative imbalance allowed between the parts at each level of
the recursive bisection, so as to match the actual imbalance.
Indeed, according to [21], each part of the final partition
can contain a number of nodes ranging from

(
50−µb

100

)l · |U|
to
(

50+µb

100

)l · |U|, where l = dlog2(m◦)e is the number of
bisection steps. Thus we set µ as the minimum value for which
the lower-bound is smaller than min{ni} and the upper-bound
is greater than max{ni}, ni being the number of nodes of
part i of the hidden partition. We also combine h-Metis with
the proposed strategy for the estimation of m. The algorithm
is applied again on the matrices and it is granted the same
flexibility given to our procedure by adding the same amount
nδ of dummy nodes.

Both algorithms are run twice for each matrix instance,
and the outcome of the run with the lowest p̂

m̂ estimate
is considered. The hyper-graph partitions obtained by the
proposed procedure and h-Metis are compared based on their
p̂
m̂ estimates, denoted as Rp and Rh, respectively. Table I
provides a comparison of the results where instances are
divided according to their structure in terms of distribution of
the continuous and discrete nodes. As shown in the last row
of Table I, our algorithm has a better performance (Rp < Rh)
when h-Metis uses the correct m (left side of the table) and
also when it tries to estimate it (right side of the table). If



underlying structure h-Metis with m = m◦ fraction of matrices h-Metis with m estimation
Rp < Rh Rp > Rh Rp = Rh per structure Rp < Rh Rp > Rh Rp = Rh

balanced 6% 0% 17% 23% 6% 0% 17%
only-discrete balanced 27% 1% 17% 45% 30% 11% 14%

unbalanced 18% 8% 6% 32% 29% 3% 0%
all cases 51% 9% 40% 100% 65% 4% 31%

TABLE I: Comparative analysis in terms of ratio between cut-size and number of parts of our algorithm (Rp) and h-Metis (Rh)
using the correct number of parts (left side) or estimating it (right side), on a pool of 100 matrices with different structure as
specified in the first column. Each cell reports the percentage with respect to the total number of matrices.

we focus on the first setting, the two algorithms show similar
performance in the perfectly balanced and unbalanced cases,
whereas our algorithm has a better performance in the only-
discrete balanced case, where it can take full advantage of
its coarsening procedure. However, as we move to the second
setting, our algorithm clearly outperforms h-Metis in both the
only-discrete balanced and the unbalanced cases. In order to
assess the performance of our algorithm in terms of capability
of partitioning evenly the discrete variables among blocks,
we focused on the 68 matrix instances with the perfectly
balanced and only-discrete balanced structures, set Dmin = 23
and Dmax = 41 (so as to allow for some imbalance in the
recovered singly-bordered block-angular structure for A), and
computed the resulting amount of imbalance ε in terms of
discrete variables. The average imbalance over all 68 matrices
turned out to be 0.439 against 0.737 obtained using h-Metis
with the estimation of the number of blocks. Only 15 out of
the 68 singly-bordered block-angular matrices recovered by h-
Metis comply with the solver limits, while the other 53 violate
the prescribed Dmax upper bound on the number of discrete
variables per block.

V. CONCLUSION
This work addresses the problem of finding a constraint-

coupled multi-agent reformulation for a large-scale MILP with
a sparse constraint matrix, so as to make it suited for the
resolution via distributed optimization algorithms. Key to the
effectiveness of the approach is a fair, possibly even distribu-
tion of discrete decision variables among the fictitious agents,
and the minimization of the number of coupling constraints.
After translating the reformulation problem into a hyper-graph
partitioning one, we introduced a novel algorithm to account
for the specific requirements of our settings. A comparative
analysis of the introduced algorithm versus a state-of-the-art
partitioning method was performed via extensive simulations
on multiple matrices with a hidden singly-bordered block-
angular structure generated at random.

A challenging topic is how to handle the case when the
MILP does not have really a hidden multi-agent structure
but its constraint matrix can be reduced to a form which is
close to a singly-bordered block-angular one. What if the weak
connections between agents are neglected when computing the
MILP solution? Answering this question requires additional
effort, which goes far beyond this work.
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