We investigate the behavior of eigenvalues for a magnetic Aharonov-Bohm operator with half-integer circulation and Dirichlet boundary conditions in a planar domain. We provide sharp asymptotics for eigenvalues as the pole is moving in the interior of the domain, approaching a zero of an eigenfunction of the limiting problem along a nodal line. As a consequence, we verify theoretically some conjectures arising from numerical evidences in preexisting literature. The proof relies on an Almgren-type monotonicity argument for magnetic operators together with a sharp blow-up analysis.
Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles
Abatangelo L.;
2015-01-01
Abstract
We investigate the behavior of eigenvalues for a magnetic Aharonov-Bohm operator with half-integer circulation and Dirichlet boundary conditions in a planar domain. We provide sharp asymptotics for eigenvalues as the pole is moving in the interior of the domain, approaching a zero of an eigenfunction of the limiting problem along a nodal line. As a consequence, we verify theoretically some conjectures arising from numerical evidences in preexisting literature. The proof relies on an Almgren-type monotonicity argument for magnetic operators together with a sharp blow-up analysis.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.