We study the behavior of eigenfunctions for magnetic Aharonov-Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar domain. We prove a sharp estimate for the rate of convergence of eigenfunctions as the pole moves in the interior of the domain.
Rate of convergence for eigenfunctions of Aharonov-Bohm operators with a moving pole
Abatangelo L.;Felli V.
2017-01-01
Abstract
We study the behavior of eigenfunctions for magnetic Aharonov-Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar domain. We prove a sharp estimate for the rate of convergence of eigenfunctions as the pole moves in the interior of the domain.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.