Significance: This study is a preliminary step toward the identification of a noninvasive and reliable tool for monitoring the presence and progress of gaiting dysfunctions. Aim: We present the results of a pilot study for monitoring the motor cortex hemodynamic response function (HRF) in freely walking subjects, with time-domain functional near-infrared spectroscopy (TD fNIRS). Approach: A compact and wearable single-channel TD fNIRS oximeter was employed. The lower limb motor cortex area of three healthy subjects was monitored while performing two different freely moving gaiting tasks: forward and backward walking. Results: The time course of oxygenated and deoxygenated hemoglobin was measured during the different walking tasks. Brain motor cortex hemodynamic activations have been analyzed throughout an adaptive HRF fitting procedure, showing a greater involvement of motor area in the backward walking task. By comparison with the HRF obtained in a finger-tapping task performed in a still condition, we excluded any effect of motion artifacts in the gaiting tasks. Conclusions: For the first time to our knowledge, the hemodynamic motor cortex response was measured by TD fNIRS during natural, freely walking exercises. The cortical response during forward and backward walking shows differences, possibly related to the diverse involvement of the motor cortex in the two types of gaiting.

Monitoring the motor cortex hemodynamic response function in freely moving walking subjects: A time-domain fNIRS pilot study

Lacerenza M.;Buttafava M.;Dalla Mora A.;Zappa F.;Pifferi A.;Tosi A.;Torricelli A.;Contini D.
2021-01-01

Abstract

Significance: This study is a preliminary step toward the identification of a noninvasive and reliable tool for monitoring the presence and progress of gaiting dysfunctions. Aim: We present the results of a pilot study for monitoring the motor cortex hemodynamic response function (HRF) in freely walking subjects, with time-domain functional near-infrared spectroscopy (TD fNIRS). Approach: A compact and wearable single-channel TD fNIRS oximeter was employed. The lower limb motor cortex area of three healthy subjects was monitored while performing two different freely moving gaiting tasks: forward and backward walking. Results: The time course of oxygenated and deoxygenated hemoglobin was measured during the different walking tasks. Brain motor cortex hemodynamic activations have been analyzed throughout an adaptive HRF fitting procedure, showing a greater involvement of motor area in the backward walking task. By comparison with the HRF obtained in a finger-tapping task performed in a still condition, we excluded any effect of motion artifacts in the gaiting tasks. Conclusions: For the first time to our knowledge, the hemodynamic motor cortex response was measured by TD fNIRS during natural, freely walking exercises. The cortical response during forward and backward walking shows differences, possibly related to the diverse involvement of the motor cortex in the two types of gaiting.
2021
brain
freely moving
functional near-infrared spectroscopy
gaiting task
oximetry
time-domain functional near-infrared spectroscopy
walking
sezele
File in questo prodotto:
File Dimensione Formato  
015006_1.pdf

accesso aperto

Descrizione: fulltext
: Publisher’s version
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1175491
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact