Motivation: The relationship between gene co-expression and chromatin conformation is of great biological interest. Thanks to high-throughput chromosome conformation capture technologies (Hi-C), researchers are gaining insights on the tri-dimensional organization of the genome. Given the high complexity of Hi-C data and the difficult definition of gene co-expression networks, the development of proper computational tools to investigate such relationship is rapidly gaining the interest of researchers. One of the most fascinating questions in this context is how chromatin topology correlates with gene co-expression and which physical interaction patterns are most predictive of co-expression relationships. Results: To address these questions, we developed a computational framework for the prediction of co-expression networks from chromatin conformation data. We first define a gene chromatin interaction network where each gene is associated to its physical interaction profile; then, we apply two graph embedding techniques to extract a low-dimensional vector representation of each gene from the interaction network; finally, we train a classifier on gene embedding pairs to predict if they are co-expressed. Both graph embedding techniques outperform previous methods based on manually designed topological features, highlighting the need for more advanced strategies to encode chromatin information. We also establish that the most recent technique, based on random walks, is superior. Overall, our results demonstrate that chromatin conformation and gene regulation share a non-linear relationship and that gene topological embeddings encode relevant information, which could be used also for downstream analysis.

Exploring chromatin conformation and gene co-expression through graph embedding

Varrone M.;Nanni L.;Ceri S.
2020-01-01

Abstract

Motivation: The relationship between gene co-expression and chromatin conformation is of great biological interest. Thanks to high-throughput chromosome conformation capture technologies (Hi-C), researchers are gaining insights on the tri-dimensional organization of the genome. Given the high complexity of Hi-C data and the difficult definition of gene co-expression networks, the development of proper computational tools to investigate such relationship is rapidly gaining the interest of researchers. One of the most fascinating questions in this context is how chromatin topology correlates with gene co-expression and which physical interaction patterns are most predictive of co-expression relationships. Results: To address these questions, we developed a computational framework for the prediction of co-expression networks from chromatin conformation data. We first define a gene chromatin interaction network where each gene is associated to its physical interaction profile; then, we apply two graph embedding techniques to extract a low-dimensional vector representation of each gene from the interaction network; finally, we train a classifier on gene embedding pairs to predict if they are co-expressed. Both graph embedding techniques outperform previous methods based on manually designed topological features, highlighting the need for more advanced strategies to encode chromatin information. We also establish that the most recent technique, based on random walks, is superior. Overall, our results demonstrate that chromatin conformation and gene regulation share a non-linear relationship and that gene topological embeddings encode relevant information, which could be used also for downstream analysis.
2020
Genome
Molecular Conformation
Software
Chromatin
Chromosomes
File in questo prodotto:
File Dimensione Formato  
btaa803.pdf

Open Access dal 01/01/2022

: Publisher’s version
Dimensione 565.53 kB
Formato Adobe PDF
565.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1171738
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact