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Abstract

Motivation: The relationship between gene co-expression and chromatin conformation is of great biological inter-
est. Thanks to high-throughput chromosome conformation capture technologies (Hi-C), researchers are gaining
insights on the tri-dimensional organization of the genome. Given the high complexity of Hi-C data and the difficult
definition of gene co-expression networks, the development of proper computational tools to investigate such rela-
tionship is rapidly gaining the interest of researchers. One of the most fascinating questions in this context is how
chromatin topology correlates with gene co-expression and which physical interaction patterns are most predictive
of co-expression relationships.

Results: To address these questions, we developed a computational framework for the prediction of co-expression
networks from chromatin conformation data. We first define a gene chromatin interaction network where each gene
is associated to its physical interaction profile; then, we apply two graph embedding techniques to extract a low-
dimensional vector representation of each gene from the interaction network; finally, we train a classifier on gene
embedding pairs to predict if they are co-expressed. Both graph embedding techniques outperform previous meth-
ods based on manually designed topological features, highlighting the need for more advanced strategies to encode
chromatin information. We also establish that the most recent technique, based on random walks, is superior.
Overall, our results demonstrate that chromatin conformation and gene regulation share a non-linear relationship
and that gene topological embeddings encode relevant information, which could be used also for downstream
analysis.

Availability and implementation: The source code for the analysis is available at: https://github.com/marcovarrone/
gene-expression-chromatin.

Contact: luca.nanni@polimi.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The human genome counts approximately more than 20 000
protein-coding genes (International Human Genome Sequencing
Consortium et al., 2001, 2004) and their exact number is still un-
known (Salzberg, 2018). The availability of gene expression profil-
ing technologies like DNA microarrays and RNA sequencing
(Emrich et al., 2007) enables massive studies of gene expression pat-
terns across tissues and clinical conditions. In this context, the study
of gene co-expression networks plays a role of major interest.

Co-expression between two genes can indicate a functional rela-
tion, the belonging to a shared transcriptional regulatory program
or their participation in the same pathway (Stuart et al., 2003). The
analysis of co-expression networks have been successfully used to
determine gene-disease associations (van Dam et al., 2018) or gene
modules associated with a phenotype of interest (Chou et al., 2014;
Kogelman et al., 2014; Oh et al., 2015; Yang et al., 2014; Zhao

et al., 2010). Co-expression networks can be inferred from expres-
sion profiling data using several methods (Zhang and Horvath,
2005), ranging from Pearson correlation (Ala et al., 2008;
Langfelder and Horvath, 2008; Stuart et al., 2003) to entropy meas-
urements (Butte butte 2000).

A relevant issue in structural biology is understanding the rela-
tionship between gene co-expression and the spatial configuration
of the genome (Dekker and Misteli, 2015). Chromosome conform-
ation capture technologies, especially high-throughput chromosome
conformation capture (Hi-C) (Lieberman-Aiden et al., 2009), are
used to reconstruct the high level three-dimensional architecture of
the genome. The human genome reveals a hierarchical structure
(Lieberman-Aiden et al., 2009; Szabo et al., 2019); a striking prop-
erty of genome folding is the existence of sub-megabase regions of
strong self-interactions, which were called topologically associating
domains (TADs) (Dixon et al., 2012). Initial studies about TADs
revealed that genes belonging to the same domain show similar
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expression patterns (Dixon et al., 2012; Gonzalez-Sandoval and
Gasser, 2016). Another hallmark of genome organization is loops,
defined as points of significantly strong interaction in the Hi-C con-
tact matrix, which have been associated with the presence of CTCF
binding sites (Rao et al., 2014).

Recent works highlighted the need for integrating gene expression
and chromatin conformation to study gene activity (Babaei et al.,
2015; Delaneau et al., 2019; Kustatscher et al., 2017) showing how
gene activity tends to cluster in cis- and trans-regulatory domains.
Therefore, computational tools for the joint study of genome con-
formation and gene expression are rapidly gaining the interest of the
research community (Tian et al., 2019; Zhou et al., 2019). Both the
gene chromatin and co-expression networks can be represented by
graphs, having genes as nodes and the relationships between genes as
edges, weighted either by the strength of physical interaction or by ex-
pression correlation. Topological features of each node are modeled
by means of features, called node embeddings.

In this work, we explore the relationship between chromatin
conformation and gene expression using a predictive modeling ap-
proach. This enables us to study which feature embedding strategies
are best suited for encoding chromatin topology information and to
what extent they are able to infer co-expression relations between
genes. Specifically, we predict co-expression between two genes
from the physical set of interactions derived from a Hi-C experi-
ment. Previous work addressed this problem by computing a set of
predefined measures for each gene/node in the Hi-C network to be
used as input of the classifier (Babaei et al., 2015); this strategy
assures full transparency of the studied topological features, but it
hardly captures network topologies and node similarities. We in-
stead explore the use of representation learning (Bengio et al., 2012)
for embedding the topological features of genes. Representation
learning on graphs (Hamilton et al., 2017) is a rapidly emerging
trend in machine learning, recently applied in biology to many net-
work inference tasks (Dai et al., 2015; Du et al., 2019; Nelson et al.,
2019; You et al., 2017; Yue et al., 2019). In our work, the features
of the nodes are learnt by solving an optimization problem, which
defines the embedding strategy of the physical interaction network
extracted from Hi-C data. Therefore, the proper choice of the opti-
mization method is critical.

We compare two different node embedding strategies. The first
method is based on Matrix Factorization (Yue et al., 2019), while
the second exploits a random walk procedure to find similar embed-
dings for genes in the same neighborhood (Grover and Leskovec,
2016). We then use the learnt embeddings to train a non-linear clas-
sifier, based on random forest (Breiman, 2001), and compare the
performances between the two embedding strategies and against a
set of baselines. We validate our models on an extensive set of tis-
sues, cell-lines and conditions, where Hi-C data and the relative

gene expression is available. Our results show that both our embed-
ding methods outperform previous approaches, highlighting the
need for more complex gene topological representations. Results are
finally validated with a holdout dataset. Automatic learning of gen-
omic features can therefore unravel latent relationships between
chromatin organization and gene expression and the learnt represen-
tations have the potential to be used for downstream analyses.

2 Materials and methods

2.1 Overview of the method
Our method is composed of three main tasks: generation of the gene
chromatin network, learning of the gene embeddings and prediction
of co-expression links.

• In the first task, we summarize the chromatin interaction infor-

mation of genes from Hi-C maps by taking into account also

their neighboring regions. This produces a gene network whose

edges represent the strength of physical interaction between pairs

of genes.
• This network is then used as input of a node embedding algo-

rithm to build a vector representation of each gene. For this task,

we propose two embedding strategies, respectively referring to

matrix factorization and to the generation of random walks. We

also perform a comparative analysis between them and with

other known methods.
• The final task of the pipeline takes as input pairs of genes and

their embeddings and predicts if they are co-expressed. The pre-

diction algorithm is trained by using as training set a subset of

the interactions. For this task, we used a non-linear classifier

based on random forest.
The overall framework for gene co-expression prediction is illus-

trated in Figure 1.

2.2 Generating a gene chromatin network
The first task of our pipeline concerns the definition of a Gene
Chromatin Network derived from a Hi-C experiment. We binned at
40 KB the Hi-C maps of all experiments and performed iterative
correction normalization (Imakaev et al., 2012). Then, for each
gene, we extracted its transcription starting site (TSS) coordinates
using ENSEMBL. We then associated to each TSS the 40 KB bin of
the Hi-C contact matrix overlapping with it. Finally, we extracted a
gene � gene matrix where each value (i, j) corresponds to the

Fig. 1. Schematic representation of the proposed workflow. The pipeline is composed by a three main tasks. Initially, a Gene Chromatin Network is generated by summarizing

Hi-C information of genes and their neighborhood for each gene, producing an interaction vector for each gene (1). Then, produce reduced vector representations of genes

through network embedding techniques (matrix factorization or random walks) (2). The final step focuses on co-expression prediction, which is done by taking the combined

pairs of gene vectors as input for a random forest classifier, trained on a subset of the gene co-expression network (3)

Exploring chromatin conformation and gene co-expression through graph embedding i701

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i700/6055934 by guest on 29 April 2021



normalized number of contacts between the genomic bins associated
with gene i and j; the result is therefore a contact map where each
bin maps to at least one TSS. At the end of this procedure, we had a
gene chromatin network for each Hi-C experiment.

Since Hi-C contacts are subject to several biases and noise (Yaffe
and Tanay, 2011), we then applied a strong threshold on each gene–
gene interaction, selecting only those whose number of reads was
higher than the 80th percentile of all interactions across chromo-
somes, after removing the self-interactions along the main diagonal.
It must be noted that the ICE normalization performed on the con-
tact map does not normalize the interaction strength by the distance
between genomic regions. We opted for this configuration in order
to preserve also the local connectivity of the gene chromatin net-
work so to exploit the knowledge of the linear neighbors for each
gene during the learning of gene embeddings. We also analyzed the
relationship between co-expression and genomic distance between
pairs of genes in the same chromosome (Fig. 2) and noticed a
dependency between neighboring genes. This finding, in concord-
ance with previous studies (Soler-Oliva et al., 2017), validated our
choice to preserve neighboring interactions in the gene chromatin
network.

The generation of the gene chromatin network is dependent on
the coverage (i.e. the number of reads) of the Hi-C experiment. As a
consequence, a proper bin size depends on data quality. Different
bin sizes control the extension of the neighboring regions around the
TSS of the genes in different ways, therefore capturing interaction
patterns at different genomic scales.

We studied the relationship between gene co-expression net-
works and gene chromatin networks in three different setups, having
independent feature generation and model training. We first defined
an interaction network for each chromosome, therefore considering
only intra-chromosomal interactions, and performed the analysis
separately; then, we merged all the single-chromosome networks to-
gether, thus defining a unified network with 22 separated compo-
nents; finally, we used also inter-chromosomal interactions to define
a single gene interaction network where genes can potentially inter-
act across different chromosomes.

2.3 Gene chromatin network embedding
Network embedding methods aim at learning, from the adjacency
matrix A 2 Rn�n of n nodes, a low-dimensional representation z 2
Rk for each node of the network (Arsov and Mirceva, 2019;
Hamilton et al., 2017). The mapping follows the principle for which
similar nodes in the network must have similar representation
vectors. The different interpretations of the concept of node

similarity pushed the generation of a multitude of network embed-
ding methods. A vector representation enables to leverage the power
and speed of the methods designed for data residing in vector
spaces. Furthermore, the node embeddings may explicitly highlight
functional and structural properties hidden in the network itself.
Finally, the dimensionality reduction acts as a noise filter (Nelson
et al., 2019).

Among the various techniques, we considered matrix factoriza-
tion and random walk. Matrix factorization methods aim at recon-
structing the original matrix through the multiplication of two or
more small matrices, obtaining a low-rank space for the network;
for this approach, we used singular value decomposition (SVD).
Random walk-based methods aim at preserving the local structure
of a node neighborhood in the transition from the very sparse and
high-dimensional space of the adjacency matrix to the dense and
low-dimensional space of the embedding; for this approach, we used
node2vec. We then compared the co-expression prediction perform-
ances of these two methods against a set of baseline embedding
methodologies:

• Random predictor: since our co-expression prediction task is bin-

ary with balanced classes, this corresponds to a 50% prediction

accuracy.
• Distance-based predictor: gene co-expression can be influenced

by the relative distance between genes, where nearby genes tend

to have similar expression dynamics (Fig. 2). We assess this prop-

erty by training a simple classifier using as feature only the gen-

omic distance between pairs of genes.
• Topological measures: gene topology can be summarized by a set

of engineered features extracted from the Hi-C gene network

coming from the graph theory literature.
The topological measures used as baseline embedding are taken

from Babaei et al. (2015). In their work, they built a feature vector
for each pair of genes (gi, gj) composed of: shortest path between gi

and gj, a Jaccard index indicating the proportion of shared con-
nected genes between gi and gj and finally the average and absolute
difference of degree (i.e. number of connections of a gene), between-
ness (i.e. number of shortest paths passing through a gene) and clus-
tering coefficient (i.e. number of connections between the direct
neighbors of a gene) of gi and gj.

2.3.1 Matrix factorization

SVD is one of the most popular matrix factorization techniques. It
factorizes an m � n matrix A into three distinct matrices, whose
multiplication returns an approximation of A itself. These matrices
represent the rows and columns of A in terms of a new, low-
dimensional space of latent factors, therefore capturing high-level
similarities between rows and between columns. Depending on the
number of latent factors, the resulting matrix decomposition can en-
code a low or high amount of information.

More specifically, the (truncated) SVD factorizes A as follows:

A ¼ URVT

where U is an m� d matrix of the rows expressed in terms of the d
latent factors, VT is a d � n matrix of the columns expressed in
terms of the d latent factors and R is a d � d diagonal matrix of sin-
gular values, which are usually ordered by size as they express the
importance of each latent factor. The number of latent factors (i.e.
the embedding size) depends on the size of R.

In our case, the original matrix A is the n � n adjacency matrix
of the gene chromatin network and, thus, rows and columns repre-
sent the same set of genes. U and V are of size n � d and both their
rows can be considered as embeddings of the same genes. However,
with the current setting, each gene has two embeddings, one from U
and one from V. It is useful to obtain a single embedding vector, in-
stead of two, for each gene by further decomposing R to express the
SVD as binary matrix factorization.

Fig. 2. Average normalized (mean-centered) co-expression between pairs of genes as

a function of the distance between their TSS, calculated through lowess regression

for five datasets from the studied compendium
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A ¼ ðUR
1
2ÞðR1

2VTÞ ¼WCT :

Following Yue et al. (2019), the gene embeddings are then
obtained by summation of the two factors:

E ¼W þC:

2.3.2 Node embedding through random walks

The node2vec algorithm (Grover and Leskovec, 2016) is a random
walk-based method to learn the node embeddings of a network, fol-
lowing the principle that similar nodes have similar representations.
Similarity in this context is interpreted in two ways:

• homophily: two nodes are similar if they belong to similar

communities;
• structural equivalence: two nodes are similar if they have the

same role in the network (e.g. they are both hubs).

The algorithm is able to control the relevance of the two similar-
ities in the generation of the embeddings.

The node2vec algorithm is derived from the work on the Skip-
gram model (Mikolov et al., 2013), in which an embedding for a
word is learned by predicting the nearby words in the text. The
number of surrounding words considered is determined by the win-
dow hyper-parameter w. In the case of networks, there is no linear
sequence of elements to learn from. For this reason, random walks
have been introduced to generate, for each node, sequences of nodes
representing its neighborhood.

The algorithm execution is divided into three phases: computa-
tion of the transition probabilities, random walk simulation and
optimization.

First, it computes the probability of the random walk to transi-
tion from a node to another. Depending on the neighbors of a node,
the two model’s parameters p and q control the probability of transi-
tioning to them, thus, controlling the sampling strategy for generat-
ing the random walk.

The sampling strategy for the neighborhood strongly influences
the relevance of homophily and structural equivalence for the gener-
ation of the embedding. In particular, the higher the value of p, the
less likely is the walk to revisit a node, reducing the locality of the
generate neighborhood; q controls the balance between exploring
inward nodes and outward nodes.

It is important to note that the two sampling methods are not
mutually exclusive. The strategy can incorporate both the aspects
with different degree depending on the values of p and q.

Then, the transition probabilities can be precomputed and used
to simulate, starting from each node in the network, r random walks
of fixed length l, resulting in a total of n � r random walks, where n
is the number of nodes in the network.

Given the set of nodes in the network V, let f : V ! Rd be the
function that takes a node and outputs its embedding, where d is the

size of the embedding and let NSðuÞ � V be the neighborhood of a
node u using the sampling strategy S.

The algorithm optimizes the following optimization function
through stochastic gradient descent:

maxf

X

u2V

log PrðNSðuÞjf ðuÞÞ:

At the end of the training of the Skip-gram model, the embed-
dings for each node are extracted as the values of the hidden layer
associated to the node.

2.4 Co-expression network inference
The final step of our framework concerns the prediction of gene co-
expression from the gene topological embeddings extracted from
their physical interactions. This problem can be addressed by train-
ing a classifier to predict, given two genes and their vector represen-
tations, the existence of a link between them in the co-expression
network. Several strategies are possible for inputing the two embed-
dings to a classifier, depending on how they are aggregated into a
single vector representation, usually called edge embedding. In this
work, we compared the following node to edge embedding transfor-
mations as in Grover and Leskovec (2016):

Average
fiðuÞ þ fiðvÞ

2
(1)

Hadamard fiðuÞ � fiðvÞ (2)

Weighted� L1 jfiðuÞ � fiðvÞj; (3)

where f(u) and f(v) are the embeddings, respectively, for node u and
node v and fiðuÞ and fiðvÞ represent their ith component. Finally, we
trained a random forest binary classifier on the edge embeddings
using as label the presence or absence of links in the gene co-
expression network.

2.5 Data preparation and preprocessing
To test the consistency of our approach, we performed our analysis
on 12 different matched Hi-C and gene expression datasets. We col-
lected Hi-C data from both tissues and cell-lines, healthy and tumor,
and matched them with RNA-seq data coming from TCGA
(Weinstein et al., 2013) and GTEx (Lonsdale et al., 2013). During
the whole analysis and construction of the networks, we excluded
the sex chromosomes and considered only the autosomes. In
Table 1, we display the various matched experiments we considered
in the following analysis.

Table 1. Source datasets used in this study together with their metadata

Hi-C source Hi-C reads

(millions)

Hi-C type N. genes N. samples

RNA-seq

N. edges gene

co-expression network

N. edges gene

chromatin network

Adrenal gland Schmitt et al. (2016) 97.27 Tissue 20 705 264 1 190 506 290 370

Aorta Schmitt et al. (2016) 347.67 Tissue 20 528 438 1 133 207 678 319

Breast cancer Barutcu et al. (2015) 274.0 Cell line (MCF-7) 14 519 1224 609 747 150 762

Breast normal Le Dily et al. (2019) 343.0 Cell line (MCF-10A) 21 353 465 1 285 926 462 855

Hippocampus Schmitt et al. (2016) 103.38 Tissue 20 930 203 1 160 528 377 233

Left ventricle Schmitt et al. (2016) 720.17 Tissue 19 011 438 994 113 433 202

Lung cell line Rao et al. (2014) 1416.12 Cell line (IMR-90) 21 903 584 1 302 634 1 714 703

Lung rep. 1 Schmitt et al. (2016) 49.27 Tissue 21 903 584 1 302 634 188 992

Lung rep. 2 Schmitt et al. (2016) 70.71 Tissue 21 903 584 1 302 634 288 188

Pancreas rep. 1 Schmitt et al. (2016) 69.35 Tissue 20 235 334 1 118 191 354 610

Pancreas rep. 2 Schmitt et al. (2016) 46.67 Tissue 20 235 334 1 118 191 141 443

Prostate cancer Rhie et al. (2019) 1000.0 Cell line (22Rv1) 14 643 556 583 446 657 946

Exploring chromatin conformation and gene co-expression through graph embedding i703

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i700/6055934 by guest on 29 April 2021



2.5.1 Generating co-expression networks

We downloaded RNA-seq datasets from GTEx for normal tissues/
cell-lines and from TCGA for tumor tissues/cell-lines; we used, as
gene expression values, log2 transformed TPM estimates for the
GTEx datasets and log2 transformed RSEM estimates for the TCGA
datasets.

Every gene with more than 80% of the samples having expres-
sion ¼0 were excluded. Then, for each pair of genes, we computed
the Pearson correlation coefficient of their samples, resulting in a
gene�gene matrix where each value (i, j) correspond to the correl-
ation of expression between gene i and gene j.

For both datasets, we evaluated three settings as previously
described for the gene chromatin networks. We constructed the
intra-chromosomal co-expression networks by applying a threshold,
computed as the 90th percentile of correlation across the values of
all the 22 co-expression matrices. Then, we generated a single net-
work composed by 22 separated components by combining all the
single-chromosome networks. Finally, we considered also inter-
chromosomal co-expression relations. In all the cases, self-loops
were removed from the networks.

2.5.2 Chromatin interaction data

We downloaded Hi-C data for each of the 12 datasets from the sour-
ces reported in Table 1. The data were binned at 40 KB resolution
and normalized using the iterative correction method (Imakaev
et al., 2012). Notice that, the data from Schmitt et al. (2016) did not
provide inter-chromosomal contacts, therefore, we could not evalu-
ate the inter-chromosomal chromatin network embedding for them.

2.6 Model evaluation
We compared different embedding methods on the basis of the ac-
curacy of the random forest classifier, which is defined as the frac-
tion of correct predictions out of all the test samples.

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
:

In order to train the classifier, we fed it with both positive (pairs
of co-expressed genes) and negative samples (pairs of not co-
expressed genes). To do so, we generated the negative samples by
taking pairs of genes, which did not interact in the co-expression
network. In addition, we constrained the search of negative pairs to
only those whose genes, which were present in the positive set. To
balance the training of the classifier, we generated the same number
of negative samples as positive ones. All the results for each experi-
mental setting were generated using 5-fold cross-validation.

To maintain balance of the positive and negative classes through-
out the evaluation process, the training, validation and test con-
tained a number of negative samples equal to the number of positive
samples.

Finally, for each experimental setup, we initially removed 20%
of the positive and negative co-expression links as holdout test set.
This dataset was used as a final evaluation of our models and was
not used during the hyper-parameter search and model definition.

3 Results

3.1 Intra-chromosomal co-expression prediction
In our first setting, we trained a distinct model for each non-sexual
chromosome. Embeddings for different chromosomes were gener-
ated independently from each other, as well as the training of the
classifiers. We set the node2vec hyper-parameters to the default val-
ues p ¼ 1, q ¼ 1, r ¼ 10 and l ¼ 80. The random forest classifier
used 100 trees.

We then studied how the size of the embeddings influenced the
prediction performances (Fig. 3, see Supplementary Fig.). We there-
fore looked at the prediction accuracy as a function of the embed-
ding algorithm, the number of elements in the gene vectors and of
the embedding aggregation strategy to build edge representations.
We found that accuracy increases monotonically with the

embedding size, demonstrating that bigger embeddings can capture
more topological information, useful for the prediction task.

To see if this relationship is independent from the chosen edge
classifier, we performed the previous analysis using a logistic regres-
sion classifier instead of random forest. Given the linear nature of
Logistic Regression, we did not expect to match the prediction per-
formances of random forest. On the other hand, the correlation be-
tween embedding size and accuracy was preserved. We noted that,
the Hadamard product and the average of gene embeddings had the
best performance with the random forest classifier in both the left
ventricle and adrenal gland datasets.

Interestingly, when comparing node2vec with SVD, they pro-
duced slightly different outcomes as a function of embedding size.
For small embedding sizes, SVD was more efficient in capturing in-
formation about the network topology, but for embedding sizes >8
node2vec achieved the best accuracy, in particular in the adrenal
gland dataset. We then decided to use the Hadamard product and
an embedding size of 16 elements in the following experiments and
in the comparisons with the other baselines.

In all the considered datasets, our embedding strategies outper-
formed the topological measures and distance-based predictors
(Figs 4 and 5). We did not find significant correlation with the Hi-C
coverage or the number of gene expression samples used to build the
co-expression networks, therefore showing the robustness of the ap-
proach. Additionally, we compared results of the two Hi-C repli-
cates of lung and pancreas tissues finding similar results between
replicates, highlighting the stability of the method to intrinsic experi-
mental noise (not shown in the figure).

In general, node2vec outperformed SVD. In Figures 4 and 5, we
show the box plots, based on a 5-fold cross-validation output for
each of the 22 chromosomes, the former on healthy tissues and cell-
lines, the latter on two cancer cell-lines.

Interestingly, a predictor purely based on the linear distance be-
tween the pair of genes along the chromosomes performs consistent-
ly better than the baseline random classifier. This confirms our
previous findings (Fig. 2). On average topological measures are able
to predict 61–63% of the co-expression links across chromosomes,
while SVD and node2vec embeddings, respectively, recover 64–66%
and 67%. It must be noticed that although the improvement over
previous methodologies is consistent both between chromosomes
and across datasets, chromatin data are not sufficient to completely
explain co-expression. This is expected and more complex models
taking into account transcription factor binding and histone modifi-
cations could improve the prediction accuracy. Being our work
focused only on chromatin conformation, we deemed the integra-
tion of additional data sources out of scope.

3.2 Building a shared model for all chromosomes
We next considered the training on the whole set of chromosomes,
therefore generating compatible sets of vector representations for
the entire genome. In order to do that, we assembled a single net-
work from each of the 22 single-chromosome networks. The result-
ing network was therefore composed of 22 independent
components. The substantial difference from the previous experi-
mental setup is that both the node embedding strategy and the edge
classifier were trained on the entire set of genes and intra-
chromosomal interactions. This enabled us to study the generaliza-
tion capabilities of the models and prevent possible over-fitting
issues, which could arise due to the size and gene density of specific
chromosomes.

The hyper-parameters p, q, r, l, w of the node2vec algorithm
were obtained through a hyper-parameter tuning based on the
Bayesian optimization algorithm (Snoek et al., 2012). For each data-
set, the optimization process explored around 70 configurations of
the hyper-parameters.

The same hyper-parameters were used during the test on the
holdout dataset. The results of this test confirmed our previous find-
ings, with the exception of the SVD embedding method, whose per-
formance was significantly lower than in the previous setting, being
outperformed also by simple network topology measures (Fig. 6).
This is due to the intrinsic design of SVD, which reconstructs the
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original adjacency matrix taking into account also the negative
interactions (the zeros of the matrix). But in this setting, the adja-
cency matrix is a block-diagonal matrix with all the inter-
chromosomal interactions set to zero. The overwhelmingly sparsity
of the matrix thus produces poor quality SVD embeddings. On the
other hand, neighborhood-based methods like node2vec show simi-
lar results as before, outperforming all other baselines.

3.3 Including inter-chromosomal contacts to create

a genome-wide chromatin network
We finally considered also inter-chromosomal contacts in our ana-
lysis. Therefore, we built a whole-genome gene chromatin network
taking into account also the inter-chromosomal gene interaction
profiles. Since the coverage of inter-chromosomal interactions is
drastically lower than for intra-chromosomal, we decided to apply a

Fig. 3. Accuracy of co-expression prediction as a function of the embedding size in Left Ventricle (left) and Adrenal Gland (right) datasets. The other datasets display similar

behavior and are omitted for brevity. We evaluated both SVD and node2vec embeddings using random forest (green and red lines) and logistic regression (blue and orange

lines) classifiers. We also explored three different gene embedding combination functions: Hadamard product (top), element-wise average (center) and weighted L1 (bottom).

See the Supplementary Figure for the analysis of all the studied datasets

Fig. 4. The 5-fold cross-validation accuracy across the 22 single-chromosome networks of the proposed gene embedding strategies and comparison with baselines. Each box

plot is derived from the accuracy measures for each cross-validation fold and for each chromosome. For each matched healthy Hi-C/gene expression dataset, we evaluated a

random predictor, a pure distance-based predictor (purple), a random forests predictor based on manually derived topological measures from the gene chromatin network

(green) and finally a random forest model leveraging our SVD (blue) and node2vec (orange) embeddings
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more compelling threshold to assign an edge to pairs of genes
belonging to different chromosomes: only inter-chromosomal con-
tacts above the 90th percentile were therefore considered. Since only
few datasets of our compendium have enough inter-chromosomal
reads to perform a meaningful analysis, this analysis was done only
on the MCF-10A, MCF-7, IMR-90 and 22Rv1 cell-lines.

Due to their different biological nature, the simultaneous use of
both intra- and inter-chromosomal interactions is a challenging task
(Lajoie et al., 2015): given their strong unbalance, an excessively
sparse inter-chromosomal sub-network may nullify the value of cre-
ating a single genome-wide network, while an excessively dense one

may decrease too much the importance of the intra-chromosomal
interactions. Additionally, intra- and inter-chromosomal sub-net-
works differ topologically, since the former has a dependency on
genomic distance, while the latter does not.

To prevent the noise coming from inter-chromosomal interac-
tions to affect too much the learning of the node2vec embeddings,
thus decreasing their information content with respect to the intra-
chromosomal topology, we reduced the probability for a random
walk to pass by an inter-chromosomal link to one-tenth of the ori-
ginal probability.

The best hyper-parameters of node2vec, according to the results
of the Bayesian optimization, were p ¼ 1:5; q ¼ 1:2; r ¼ 70; l ¼ 80;
w ¼ 12, with a validation accuracy of 0.6922. The process explored
30 different configurations.

For the training of the random forest classifier, we sampled a
number of inter-chromosomal links from the whole-genome co-ex-
pression network equal to the total number of intra-chromosomal
links. In this way, we prevented possible biases of model toward
inter-chromosomal co-expression links, which greatly outnumber
the intra-chromosomal ones in the gene co-expression network.

In Figure 7, we present the results of this analysis. Since, we
tested links, which can span different chromosomes, we could not
apply the distance-based predictor. The results confirmed our previ-
ous findings. Predictably, SVD embeddings encoded more relevant
information than in the previous setup (see Fig. 6) thanks to the
more homogeneous network obtained by adding inter-chromosomal
contacts. Still, random walk-based approaches outperformed both
matrix factorization and manually engineered topological features.

3.4 Evaluation on the holdout dataset
To further validate all our previous findings, we used the holdout
dataset of co-expression links which we initially removed from our
data collection. In Table 2, we summarize the accuracy of each
model on the holdout dataset, showing that the accuracies of the
holdout set are similar to those produced by the 5-fold cross-
validation. Thus, the models exhibit high generalization power.

4 Discussion

Understanding the relationship between the spatial conformation of
the genome and the regulation of gene expression is a fascinating
biological question. We defined a general framework for gene co-
expression prediction from chromatin conformation data extracted
from Hi-C experiments. We first extracted a gene chromatin net-
work by filtering Hi-C interactions at the level of transcription start-
ing sites, therefore associating to each gene its physical interaction
profile. We then studied which network embedding strategy best
encodes topological information by comparing matrix factorization
with a method based on random walks on the gene interaction
graph. Finally, we used the gene embedding vectors, which were

Fig. 5. Same as Figure 4, but focused on the two cancer cell-lines MCF-7 and 22Rv1

Fig. 6. The 5-fold cross-validation accuracy measures for the aggregated network derived by merging the 22 single-chromosome networks without considering inter-chromo-

somal interactions. Each bar represents the average accuracy across the 5-folds and the error bars represents the SD. We compared the performances of the same models as in

Figure 4

Fig. 7. The 5-fold cross-validation accuracy measures for the complete genome-wide

networks derived from both intra- and inter-chromosomal contacts and co-expres-

sion links. Each bar represents the average accuracy across the 5-folds and the error

bars represent the SDs
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learnt according to the two methods for training a binary classifier,
based on random forest, to predict co-expression between pairs of
genes.

Our results reveal that both matrix factorization and random
walk strategies are effective in predicting co-expression between
genes belonging to the same chromosome, outperforming simple
topological measures and distance-based predictions in a wide set of
tissues/cell-lines and healthy/tumor biological conditions. Our
model is able to learn gene embeddings also by training on the union
of all chromosome networks and by considering inter-chromosomal
interactions, showing that the topological properties correlating
with co-expression are shared across different chromosomes.
Interestingly, we also discovered that a pure distance-based predict-
or could predict gene co-expression better than a random baseline,
thus showing basic correlation relationships at the level of neighbor-
ing genes. Significantly, our results suggest that random walk-based
models like node2vec outperform matrix factorization approaches,
implying that the local topology of the interaction graph has greater
predictive power than global topological representations.

The proposed methods can be used as an additional step in co-
expression network inference together with more established tools
based on gene expression data (Langfelder and Horvath, 2008;
Zhang and Horvath, 2005), where chromatin data can be used to re-
fine predictions based on expression correlation. This could enable
the discovery of unknown regulatory interactions.

Our framework can be applied to other kinds of chromatin inter-
action data, like e.g. ChIA-PET or Promoter Capture HiC, thus
deriving more specific embeddings for genes. However, the quality
of the learnt embeddings is dependent on the size and completeness

of the original interaction network, making the learning difficult in
the case of very sparse datasets like ChIA-PET. Gene regulation is
an extremely complex process, orchestrated and influenced by sev-
eral biological mechanisms. For this reason, it is clear that for a bet-
ter prediction of gene co-expression networks also different kind of
input data sources must be considered, like the binding of transcrip-
tion factors and histone modifications. In our study, we did not con-
sider other information beside physical interactions to study how
these two systems correlate, but future works could consider to use
an integrated vector representation of genes aggregating heteroge-
neous data sources.

The proposed framework can be seen also as an instance of a
more general approach, which summarizes complex interactions
and relationships between biological entities (in our case, genes) in a
dense vector format. The generality of this approach can be
exploited in future work by designing more complete gene represen-
tations, taking into account also the binding of transcription factors
around genes, the presence of histone modifications and of muta-
tional events. Heterogeneous gene vector representations can be
used as input for a clustering algorithm to extract regulatory mod-
ules, refining previous annotations and databases, which are usually
built from a single data source. More generally, through the use of
embeddings, spatial properties (like Hi-C contacts) can be referred
either to genes or to genome bins, positioned upon specific genomic
regions. In this way, embedding signals can be naturally composed,
by means of integrative genomic data analysis languages and tools
(e.g. Masseroli et al., 2019; Nanni et al., 2019), with other heteroge-
neous signals, including variants, gene expression, protein binding
sites or methylation intensity, copy number alteration and so on; in
a wider perspective, embeddings could be considered as annotations
to be associated with specific loci.

Another important future improvement of our work regards the
interpretation of gene embeddings extracted from their interaction
profile. Given the recent attempts to reconcile gene expression and
chromatin topology (Delaneau et al., 2019) and the encouraging
results of our work, we can affirm that the learnt embeddings en-
code relevant information about gene regulation. At the current
state-of-the-art, there are no consolidated methods to explore node
embeddings learnt through optimization, but the recent interest in
these techniques is pushing the development of novel analysis tool-
boxes (Dalmia and Gupta, 2018). The future deep analysis of the
topological embeddings extracted from Hi-C data could reveal im-
portant properties of genome folding and their relationship with the
studied biological phenomenon, like gene co-expression.

Acknowledgements

We thank all the members of the Data-Driven Genomic Computing research

group at Politecnico di Milano and of the Computational Systems Oncology

group at University of Lausanne for their continuous support and useful

discussion.

Funding

M.V., L.N. and S.C. are supported by the ERC Advanced Grant 693174

‘Data-Driven Genomic Computing (GeCo)’.

Conflict of Interest: none declared.

References

Ala,U. et al. (2008) Prediction of human disease genes by human-mouse con-

served coexpression analysis. PLoS Comput. Biol., 4, e1000043.

Arsov,N. and Mirceva,G. (2019) Network Embedding: An Overview. arXiv

preprint arXiv:1911.11726.

Babaei,S. et al. (2015) Hi-C chromatin interaction networks predict

co-expression in the mouse cortex. PLoS Comput. Biol., 11, e1004221.

Barutcu,A.R. et al. (2015) Chromatin interaction analysis reveals changes in

small chromosome and telomere clustering between epithelial and breast

cancer cells. Genome Biol., 16, 214.

Table 2. Accuracy of the models on the holdout test set on all

the datasets in the only intra-chromosomal (a), shared intra-

chromosomal (b) and intra þ inter-chromosomal (c) setups

Dataset Distance Top. meas. SVD node2vec

Adrenal gland (a) 0.5260.02 0.6560.02 0.6960.02 0.7160.01

Adrenal gland (b) 0.51 0.62 0.59 0.72

Aorta (a) 0.5160.01 0.6160.02 0.6360.02 0.6560.02

Aorta (b) 0.50 0.59 0.58 0.65

Breast MCF7 (a) 0.5460.02 0.6560.04 0.6660.05 0.6960.04

Breast MCF7 (b) 0.53 0.64 0.60 0.71

Breast MCF7 (c) � 0.61 0.63 0.64

Breast MCF10A (a) 0.5260.01 0.6760.02 0.7060.02 0.73 60.02

Breast MCF10A (b) 0.51 0.64 0.65 0.74

Breast MCF10A (c) � 0.63 0.64 0.67

Hippocampus (a) 0.5160.01 0.6560.02 0.6760.02 0.7060.01

Hippocampus (b) 0.51 0.63 0.59 0.71

Left ventricle (a) 0.5160.01 0.6560.02 0.6960.02 0.7160.01

Left ventricle (b) 0.51 0.61 0.58 0.73

Lung IMR90 (a) 0.5160.01 0.6360.02 0.6560.02 0.6760.02

Lung IMR90 (b) 0.51 0.61 0.59 0.67

Lung IMR90 (c) � 0.60 0.64 0.66

Lung rep. 1 (a) 0.5160.01 0.6260.02 0.6460.02 0.6560.02

Lung rep. 1 (b) 0.51 0.59 0.56 0.66

Lung rep. 2 (a) 0.5260.01 0.6160.02 0.6460.02 0.6560.02

Lung rep. 2 (b) 0.51 0.60 0.57 0.66

Pancreas rep. 1 (a) 0.5260.01 0.6460.01 0.6860.02 0.7060.01

Pancreas rep. 1 (b) 0.51 0.61 0.61 0.71

Pancreas rep. 2 (a) 0.5160.01 0.6560.01 0.6860.02 0.6960.01

Pancreas rep. 2 (b) 0.51 0.61 0.57 0.70

Prostate 22Rv1 (a) 0.5260.01 0.6460.04 0.6760.04 0.6960.03

Prostate 22Rv1 (b) 0.51 0.62 0.60 0.70

Prostate 22Rv1 (c) � 0.63 0.67 0.70

Note: For the setup (a), we show the values together with their SDs across

chromosomes. In the other cases, we simply report the accuracy measure,

since it is globally computed from the network. Best performances are shown

in bold for each dataset.

Exploring chromatin conformation and gene co-expression through graph embedding i707

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i700/6055934 by guest on 29 April 2021



Bengio,Y. et al. (2012) Representation Learning: A Review and New

Perspectives. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35, 1798–1828. 10.1109/TPAMI.2013.50

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

Buttebutte,A.K. I. (2000) Mutual information relevance networks: functional

genomic clustering using pairwise entropy measurements. Pac Symp

Biocomput, 2000, 418

Chou,W.-C. et al. (2014) Visual gene-network analysis reveals the cancer gene

co-expression in human endometrial cancer. BMC Genomics, 15, 300.

Dai,W. et al. (2015) Matrix factorization-based prediction of novel drug indi-

cations by integrating genomic space. Comput. Math. Methods Med., 2015,

1–9.

Dalmia,A. and Gupta,M. (2018) Towards interpretation of node embeddings.

In:Companion Proceedings of the Web Conference 2018. pp. 945–952.

Dekker,J. and Misteli,T. (2015) Long-range chromatin interactions. Cold

Spring Harb. Perspect. Biol., 7, a019356.

Delaneau,O. et al. (2019) Chromatin three-dimensional interactions mediate

genetic effects on gene expression. Science, 364, eaat8266.

Dixon,J.R. et al. (2012) Topological domains in mammalian genomes identi-

fied by analysis of chromatin interactions. Nature, 485, 376–380.

Du,J. et al. (2019) Gene2vec: distributed representation of genes based on

co-expression. BMC Genomics, 20, 82.

Emrich,S.J. et al. (2007) Gene discovery and annotation using LCM-454 tran-

scriptome sequencing. Genome Res., 17, 69–73.

Gonzalez-Sandoval,A. and Gasser,S.M. (2016) On TADs and LADs: spatial

control over gene expression. Trends Genet., 32, 485–495.

Grover,A. and Leskovec,J. (2016) node2vec: scalable feature learning for net-

works. In: Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. pp. 855–864. ACM.

Hamilton,W.L. et al. (2017) Representation learning on graphs: methods and

applications. arXiv preprint arXiv: 1709.05584.

Imakaev,M. et al. (2012) Iterative correction of Hi-C data reveals hallmarks of

chromosome organization. Nat. Methods, 9, 999–1003.

International Human Genome Sequencing Consortium et al. (2001) Initial

sequencing and analysis of the human genome. Nature, 409, 860.

International Human Genome Sequencing Consortium et al. (2004) Finishing

the euchromatic sequence of the human genome. Nature, 431, 931.

Kogelman,L.J. et al. (2014) Identification of co-expression gene networks,

regulatory genes and pathways for obesity based on adipose tissue RNA

sequencing in a porcine model. BMC Med. Genomics, 7, 57.

Kustatscher,G. et al. (2017) Pervasive coexpression of spatially proximal genes

is buffered at the protein level. Mol. Syst. Biol., 13, 937.

Lajoie,B.R. et al. (2015) The Hitchhiker’s guide to Hi-C analysis: practical

guidelines. Methods, 72, 65–75.

Langfelder,P. and Horvath,S. (2008) WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformatics, 9, 559.

Le Dily,F. et al. (2019) Hormone-control regions mediate steroid receptor–de-

pendent genome organization. Genome Res., 29, 29–39.

Lieberman-Aiden,E. et al. (2009) Comprehensive mapping of long-range inter-

actions reveals folding principles of the human genome. Science, 326,

289–293.

Lonsdale,J. et al. (2013) The genotype-tissue expression (GTEx) project. Nat.

Genet., 45, 580–585.

Masseroli,M. et al. (2019) Processing of big heterogeneous genomic datasets

for tertiary analysis of next generation sequencing data. Bioinformatics, 35,

729–736.

Mikolov,T. et al. (2013) Efficient estimation of word representations in vector

space. arXiv preprint arXiv: 1301.3781.

Nanni,L. et al. (2019) PyGMQL: scalable data extraction and analysis for het-

erogeneous genomic datasets. BMC Bioinformatics, 20, 560.

Nelson,W. et al. (2019) To embed or not: network embedding as a paradigm

in computational biology. Front. Genet., 10, 381.

Oh,E.-Y. et al. (2015) Extensive rewiring of epithelial-stromal co-expression

networks in breast cancer. Genome Biol., 16, 128.

Rao,S.S. et al. (2014) A 3D map of the human genome at kilobase resolution

reveals principles of chromatin looping. Cell, 159, 1665–1680.

Rhie,S.K. et al. (2019) A high-resolution 3D epigenomic map reveals insights

into the creation of the prostate cancer transcriptome. Nat. Commun., 10,

1–12.

Salzberg,S.L. (2018) Open questions: how many genes do we have? BMC

Biol., 16, 94.

Schmitt,A.D. et al. (2016) A compendium of chromatin contact maps

reveals spatially active regions in the human genome. Cell Rep., 17,

2042–2059.

Snoek,J. et al. (2012) Practical Bayesian optimization of machine learning

algorithms. In:Advances in Neural Information Processing Systems. pp.

2951–2959.

Soler-Oliva,M.E. et al. (2017) Analysis of the relationship between coexpres-

sion domains and chromatin 3D organization. PLoS Comput. Biol., 13,

e1005708.

Stuart,J.M. et al. (2003) A gene-coexpression network for global discovery of

conserved genetic modules. Science, 302, 249–255.

Szabo,Q. et al. (2019) Principles of genome folding into topologically associat-

ing domains. Sci. Adv., 5, eaaw1668.

Tian,D. et al. (2020) MOCHI enables discovery of heterogeneous interactome

modules in 3D nucleome. Genome Research, 30, 227–238.

10.1101/gr.250316.119

van Dam,S. et al. (2018) Gene co-expression analysis for functional classifica-

tion and gene-disease predictions. Brief. Bioinformatics, 19, 575–592.

Weinstein,J.N. et al.; The Cancer Genome Atlas Research Network. (2013)

The cancer genome atlas pan-cancer analysis project. Nat. Genet., 45,

1113–1120.

Yaffe,E. and Tanay,A. (2011) Probabilistic modeling of Hi-C contact maps

eliminates systematic biases to characterize global chromosomal architec-

ture. Nat. Genet., 43, 1059–1065.

Yang,Y. et al. (2014) Gene co-expression network analysis reveals common

system-level properties of prognostic genes across cancer types. Nat.

Commun., 5, 3231.

You,Z.-H. et al. (2017) An improved sequence-based prediction protocol for

protein-protein interactions using amino acids substitution matrix and rota-

tion forest ensemble classifiers. Neurocomputing, 228, 277–282.

Yue,X. et al. (2019) Graph embedding on biomedical networks: methods,

applications, and evaluations. arXiv preprint arXiv: 1906.05017.

Zhang,B. and Horvath,S. (2005) A general framework for weighted gene

co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 4, 17.

Zhao,W. et al. (2010) Weighted gene coexpression network analysis: state of

the art. J. Biopharm. Stat., 20, 281–300.

Zhou,N. et al. (2019) Hierarchical Markov Random Field model captures spa-

tial dependency in gene expression, demonstrating regulation via the 3D

genome. bioRxiv.

i708 M.Varrone et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i700/6055934 by guest on 29 April 2021


	l
	tblfn1

