Steel fibers are known to improve shear behavior. The Design Codes (Eurocode 2 (EC2), Spanish EHE-08, Model Code 2010 and RILEM approach) have developed formulas to calculate the fiber contribution to shear, mainly focused on standard FRCs, i.e. medium strength concretes with a low content of normal strength steel fibers. However, in real applications other combinations are possible, such as high or medium strength concretes with high strength steel fibers of different lengths and geometry. An experimental program consisting of 12 self-compacting fiber reinforced concrete (SCFRC) I-type beams was carried out. All the beams had the same geometry and fiber content (50 kg/m3), and they were made with two different concrete compressive strength values and five different types of steel fibers and were tested for shear. The main conclusions reached were that the type of fiber substantially affects shear behavior, even when the Design Code formulas indicate similar contributions. The combination of high strength concrete matrixes with low strength fibers does not seem to be efficient. Also, the use of high residual flexural tensile strength values (e.g. fR3 or fR4) does not appear to be the most accurate reference value to calculate the beam shear strength in these cases. The present Design Codes consider standard FRCs, but their formulas should be revised for concretes with fibers of different strengths, slenderness and geometry, since these properties substantially affect shear behavior.

Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams

Cuenca Asensio Estefania;
2015-01-01

Abstract

Steel fibers are known to improve shear behavior. The Design Codes (Eurocode 2 (EC2), Spanish EHE-08, Model Code 2010 and RILEM approach) have developed formulas to calculate the fiber contribution to shear, mainly focused on standard FRCs, i.e. medium strength concretes with a low content of normal strength steel fibers. However, in real applications other combinations are possible, such as high or medium strength concretes with high strength steel fibers of different lengths and geometry. An experimental program consisting of 12 self-compacting fiber reinforced concrete (SCFRC) I-type beams was carried out. All the beams had the same geometry and fiber content (50 kg/m3), and they were made with two different concrete compressive strength values and five different types of steel fibers and were tested for shear. The main conclusions reached were that the type of fiber substantially affects shear behavior, even when the Design Code formulas indicate similar contributions. The combination of high strength concrete matrixes with low strength fibers does not seem to be efficient. Also, the use of high residual flexural tensile strength values (e.g. fR3 or fR4) does not appear to be the most accurate reference value to calculate the beam shear strength in these cases. The present Design Codes consider standard FRCs, but their formulas should be revised for concretes with fibers of different strengths, slenderness and geometry, since these properties substantially affect shear behavior.
2015
A. Fibers
B. Fracture toughness
B. Strength
D. Mechanical testing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1171299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 58
social impact