This article analyzes the stability-related properties of long short-term mem-ory (LSTM) networks and investigates their use as the model of the plant in the design of model predictive controllers (MPC). First, sufficient conditions guaranteeing the Input-to-State stability (ISS) and Incremental Input-to-State stability (deltaISS) of LSTM are derived. These properties are then exploited to design an observer with guaranteed convergence of the state estimate to the true one. Such observer is then embedded in a MPC scheme solving the tracking problem. The resulting closed-loop scheme is proved to be asymptotically stable. The training algorithm and control scheme are tested numerically on the simulator of a pH reactor, and the reported results confirm the effectiveness of the proposed approach.
Learning model predictive control with long short-term memory networks
F. Bonassi;M. Farina;R. Scattolini
2021-01-01
Abstract
This article analyzes the stability-related properties of long short-term mem-ory (LSTM) networks and investigates their use as the model of the plant in the design of model predictive controllers (MPC). First, sufficient conditions guaranteeing the Input-to-State stability (ISS) and Incremental Input-to-State stability (deltaISS) of LSTM are derived. These properties are then exploited to design an observer with guaranteed convergence of the state estimate to the true one. Such observer is then embedded in a MPC scheme solving the tracking problem. The resulting closed-loop scheme is proved to be asymptotically stable. The training algorithm and control scheme are tested numerically on the simulator of a pH reactor, and the reported results confirm the effectiveness of the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
rnc.5519.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
728.98 kB
Formato
Adobe PDF
|
728.98 kB | Adobe PDF | Visualizza/Apri |
11311-1169896_Bonassi.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
462.96 kB
Formato
Adobe PDF
|
462.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.